Demonstration of electron cooling
using a pulsed beam from an electrostatic cooler
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Principle of electron cooling

- reduce ion/proton beam emittance (“heat”) by mixing with cold medium
* Velec = <Vion> = E|<in,elec = % <E|<in,ion>

- eg. protons @ EIC:  Eyjpelec = 12.5MeV at Eyjp proton = 23.8 GeV

- cooling depends on velocity deviation in rest frame

- takes high number of passes = limited to storage rings
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Principle of energy recovery for DC beams

o kV, 1A

cathode anode collector
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Some history

- First electron cooler: 1974, Novosibirsk (DC, 37 keV electrons)
- Highest energy: 2005-2011, Fermilab (DC, 4.3 MeV electrons)

- DC acceleration limited in energy;
exact limit difficult to assess but likely too low for EIC

- 2012: JLab-IMP collaboration established
to demonstrate cooling with electron bunches

- 2013: BNL proposes RF-based bunched-beam cooling facility LEReC at RHIC
- 2016-2019: bunched-beam cooling experiments at IMP

- Feb 2020: BNL publication on successful cooling at LEReC

- July 2020: JLab-IMP publication submitted for peer review
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Purpose of the experiment

Open questions in electron cooling
- If RF-based linac is used as electron cooler, electron beam has time structure
- How does this affect the cooling properties?
- Can we use it to our advantage to mitigate overcooling?

Experimental approach

- Use available DC cooler at CSRm (IMP) and pulse the gun
- Synchronize electron pulses with ion ring RF
- But relative phase is adjustable and can be made time-dependent
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RF-based cooling considerations

- cooling force scales unfavorably with energy = compensate with current
- option: use ERL to mitigate beam power issues (under consideration for EIC

at low energy)

- move/“dither” bunches as a function of time to improve overlap pattern?
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Bunched cooling with synchrotron dynamics

- cooling force cares about velocity; bunch overlap is temporal/spatial

- high synchrotron amplitude results in...
- less time spent in region of overlap

- high velocity deviation at Ws =0

(copied from Ya. Derbenev: Theory of electron cooling)
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Principle of the bunched-beam cooling experiment
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Beam parameters

lon beam

Particle 86Kr®+

Ein 5MeV/nucleon
B 0.103

frev 191.5 kHz

h 2

Electron beam
Eqin 2.7 keV

bunch rate hfrev = 383 kHz (phase adjustable)
bunch length  100-1000ns, i.e. 3-30m
bunch current o bunch length (uniform density, 30 mA)
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Available instrumentation

- RF pickup for spectral analysis

- gives the synchrotron frequency = calibrate Ugf
- may yield Ap/p and tune spread

- individual BPMs for ions and electrons

- measure relative longitudinal bunch position and overlap
- also used as longitudinal profile monitor to observe cooling

- ionization profile monitor (IPM) for transverse profile measurement
- DCCT: ion current measurement
- not strictly necessary but a nice consistency check
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BPM setup and transfer impedance model
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- sum signals of opposite plates to remove transverse information
« U= Zlpeam With Z(w) %
- record U(t) with DSO
-« F +0hm's law + F~1 gives I(t)
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Experimental procedure

window of interest
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Experimental results:
constant bunch phase



Synchronization of DAQ devices: spectrogram
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Synchronization: beam current measurement
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- consistency check with BPM intensity and global timing
- markers calculated from procedure; referenced to dump
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Transverse

profile example (500 ns, 1.0 kV)
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Bunch delay measurement: whole frame (500 ns, 1kV)
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Beam current (arb. unit)
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- electron time axis shifted by measured A in propagation delay: 286 ns
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Method to determine Ipeam(t) bunch by bunch
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- estimate location of ion peak maxima
- slice frame halfway between peaks; select 2"9-5t" slices

- remove unphysical slope of background: fit line through left-sided and

right-sided minimum and subtract it; set everything outside that region to
zero

- “true” ion peak center determined by statistical mean
- average these four peaks, apply correction again

- from the resulting shape, compute central moments:

Variance: o2 = 1 3~ (x; — X)°
1

Excess kurtosis: K —3 = L1 57(x; —x)* -3

!
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Example averaged bunch with corrections (500 ns, 1kV)
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Beam current (arb. unit)
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Bunch phase consistency between runs
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Electron bunch length distribution
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Evolution of longitudinal profile (example: 500 ns, 1.0 kV)

lpeam (arb. unit)
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Evolution of statistical moments (example: 1.0 kV)
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Cooling rates (0.2s <t < 0.45)
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Experimental results:
Bunch phase modulation (“dithering”)
with triangle waveform



Electron bunch length distribution (with dithering)

100 ns 300 ns 500 ns

600 |- 1t i

400

200

70 80 250 255 260 265 440 460
Tbunch (I’]S) Tbunch (HS) Tbunch (ns)

- bunch length stable and without surprises

- also independent of dela
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Aliasing image of modulation waveform (300 ns bunches)

25

At (ns)

At (ns)

400
200

—200
—400

400
200

—200
—400

T T
= e 0 Hz r e 100 Hz ¢ 200 Hz
| N R R R R R Q N (\] (\] (1] (\] (\] N
| 00000000000000000 | - — |
0 o o 0 0 'S o ° o P
= -~ o 0 0 0 o % )8 % S o o/
L | | L L | | L] | | L]
T T T T T T
r e300 Hz r 0 400 Hz e 500 Hz
| 10N e 0 0 0 o | o o ) 0 0 [ |
| 00000900000 000%°e°% | | -
[\] [\) [\] [\ L] 0 0 (/] /]
— 1 I \e [ 0 0 0 o | 0 0 o ) o [\}
L | | L L | | L] | | L]
0 0.5 1 1.5 0 0.5 1 1.5 0.5 1 1.5
Time (s) Time (s) Time (s)

ggﬁ;%anab



Particle loss with modulation
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- Cooling investigation pointless. Find reason for loss first
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Understanding the particle loss issue:
Tracking simulation



What are we dealing with here?

- Similar issue with bunch length jitter and phase modulation
- Assumption: unrelated to cooling, has to do with space charge

- longitudinal: carrot force as function of synchrotron phase
- transverse: lens that is turned on/off as function of synchrotron phase
(synchro-betatron coupling)

www.bigstock.com - 91941812
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Simulation strategy

28

- In MAD-X: Divide the cooler into N drifts extending slightly beyond the actual

edges

- Take transport matrices and track in 6-d phasespace
- Use discrete 2-d or 3-d macrocharge distribution and calculate E(F) from first

principles. Non-relativistic OK.
- Caution: longitudinal coordinate in 6-d phase space is time with unit length
- Position of ion on s axis is fixed by discretization of the drift.

- Recalculate field distribution for every ion because it is a function of the arrival
time.
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Example field distribution (on-axis projection)
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- Shape depends on longitudinal coordinate of ion. Shown for an ion located

- Beam pipe neglected; normally ought to be accounted for

deep inside the electron bunch
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Tracking simulation
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- ion beam has no space charge = single-particle simulation
- synchrotron motion, per revolution:

« AEi, = UgsinV

- apply transport matrices one by one, check for transverse aperture
- for every transport matrix within the cooling drift:

- compute electric field E
= = " = Ls'\ce

" F=p=Ap=—-£Eq3e

- if coordinates are inside the cooling beam, apply friction force (wild guess just
for fun, optional)
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400 ns electron bunches, 30 ns rise/fall, central phase:
Ensemble of 1000 ions according to initial emittance

Ap;/p (1073)

initial
50k turns

I
initial || 4
50k turns
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400 ns electron bunches, 30 ns rise/fall, central phase:
Phase space trajectory of a single example ion
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1/3 of bunches (random) with edge shift, AL = 50 ns:
Ensemble of 1000 ions according to initial emittance
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1/3 of bunches (random) with edge shift, AL = 50 ns:
Phase space trajectory of a single example ion
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Particle loss rate (assuming transverse aperture +£50 mm)
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- Considering the simplified assumptions, result not terrible
- Explains dithering issue as well (not shown here)
- Stable bunch length/phase more important than we thought

.le/f_f/egon Lab



Conclusions
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