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Principle of electron cooling

• reduce ion/proton beam emittance (“heat”) by mixing with cold medium
• velec = 〈vion〉 ⇒ Ekin,elec = melec

mion

〈
Ekin,ion

〉
• e.g. protons @ EIC: Ekin,elec = 12.5MeV at Ekin,proton = 23.8GeV
• cooling depends on velocity deviation in rest frame
• takes high number of passes⇒ limited to storage rings
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Principle of energy recovery for DC beams

cathode anode collector

∝ MV, 0 A
∝ kV, 1 A
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Some history

• First electron cooler: 1974, Novosibirsk (DC, 37 keV electrons)
• Highest energy: 2005–2011, Fermilab (DC, 4.3MeV electrons)
• DC acceleration limited in energy;
exact limit difficult to assess but likely too low for EIC

• 2012: JLab-IMP collaboration established
to demonstrate cooling with electron bunches

• 2013: BNL proposes RF-based bunched-beam cooling facility LEReC at RHIC
• 2016–2019: bunched-beam cooling experiments at IMP
• Feb 2020: BNL publication on successful cooling at LEReC
• July 2020: JLab-IMP publication submitted for peer review
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Purpose of the experiment

Open questions in electron cooling

• If RF-based linac is used as electron cooler, electron beam has time structure
• How does this affect the cooling properties?
• Can we use it to our advantage to mitigate overcooling?

Experimental approach

• Use available DC cooler at CSRm (IMP) and pulse the gun
• Synchronize electron pulses with ion ring RF
• But relative phase is adjustable and can be made time-dependent
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RF-based cooling considerations

• cooling force scales unfavorably with energy⇒ compensate with current
• option: use ERL to mitigate beam power issues (under consideration for EIC
at low energy)

• move/“dither” bunches as a function of time to improve overlap pattern?
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Bunched cooling with synchrotron dynamics

• cooling force cares about velocity; bunch overlap is temporal/spatial
• high synchrotron amplitude results in…

• less time spent in region of overlap
• high velocity deviation at ΨS = 0

(copied from Ya. Derbenev: Theory of electron cooling)
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Principle of the bunched-beam cooling experiment
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Beam parameters

Ion beam
Particle 86Kr25+

Ekin 5MeV/nucleon
β 0.103
frev 191.5 kHz
h 2

Electron beam
Ekin 2.7 keV
bunch rate hfrev = 383 kHz (phase adjustable)
bunch length 100–1000ns, i.e. 3–30m
bunch current ∝ bunch length (uniform density, 30mA)
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Available instrumentation

• RF pickup for spectral analysis
• gives the synchrotron frequency⇒ calibrate URF
• may yield ∆p/p and tune spread

• individual BPMs for ions and electrons
• measure relative longitudinal bunch position and overlap
• also used as longitudinal profile monitor to observe cooling

• ionization profile monitor (IPM) for transverse profile measurement
• DCCT: ion current measurement

• not strictly necessary but a nice consistency check
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BPM setup and transfer impedance model
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• sum signals of opposite plates to remove transverse information
• U = ZIbeam with Z(ω) ∝ iωRC

(1+iωRC)

• record U(t) with DSO
• F + Ohm’s law + F−1 gives I(t)
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Experimental procedure

ion current

DC cooling bunched cooling
RF
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time (not to scale)
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Experimental results:
constant bunch phase
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Synchronization of DAQ devices: spectrogram
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Synchronization: beam current measurement
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• consistency check with BPM intensity and global timing
• markers calculated from procedure; referenced to dump
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Transverse profile example (500ns, 1.0 kV)
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Bunch delay measurement: whole frame (500ns, 1 kV)
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• electron time axis shifted by measured ∆ in propagation delay: 286 ns
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Method to determine Ibeam(t) bunch by bunch

• estimate location of ion peak maxima
• slice frame halfway between peaks; select 2nd–5th slices
• remove unphysical slope of background: fit line through left-sided and
right-sided minimum and subtract it; set everything outside that region to
zero

• “true” ion peak center determined by statistical mean
• average these four peaks, apply correction again
• from the resulting shape, compute central moments:
Variance: σ2 = 1

n
∑
i
(xi − x)2

Excess kurtosis: K − 3 = 1
σ4

1
n
∑
i
(xi − x)4 − 3
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Example averaged bunch with corrections (500ns, 1 kV)
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Bunch phase consistency between runs
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Electron bunch length distribution
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Evolution of longitudinal profile (example: 500 ns, 1.0 kV)
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Evolution of statistical moments (example: 1.0 kV)
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Cooling rates (0.2 s < t < 0.4 s)
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Experimental results:
Bunch phase modulation (“dithering”)

with triangle waveform
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Electron bunch length distribution (with dithering)
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• bunch length stable and without surprises
• also independent of delay
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Aliasing image of modulation waveform (300ns bunches)
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Particle loss with modulation
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• Cooling investigation pointless. Find reason for loss first
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Understanding the particle loss issue:
Tracking simulation
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What are we dealing with here?

• Similar issue with bunch length jitter and phase modulation
• Assumption: unrelated to cooling, has to do with space charge

• longitudinal: carrot force as function of synchrotron phase
• transverse: lens that is turned on/off as function of synchrotron phase
(synchro-betatron coupling)
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Simulation strategy

• In MAD-X: Divide the cooler into N drifts extending slightly beyond the actual
edges

• Take transport matrices and track in 6-d phasespace
• Use discrete 2-d or 3-d macrocharge distribution and calculate ~E(~r) from first
principles. Non-relativistic OK.

• Caution: longitudinal coordinate in 6-d phase space is time with unit length
• Position of ion on s axis is fixed by discretization of the drift.
• Recalculate field distribution for every ion because it is a function of the arrival
time.
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Example field distribution (on-axis projection)
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• Shape depends on longitudinal coordinate of ion. Shown for an ion located
deep inside the electron bunch

• Beam pipe neglected; normally ought to be accounted for29



Tracking simulation

• ion beam has no space charge⇒ single-particle simulation
• synchrotron motion, per revolution:

• ∆Ekin = Uq sinΨ

• apply transport matrices one by one, check for transverse aperture
• for every transport matrix within the cooling drift:

• compute electric field ~E
• ~F = ~̇p⇒ ∆~p = −~Eq Lsliceβc
• if coordinates are inside the cooling beam, apply friction force (wild guess just
for fun, optional)
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400ns electron bunches, 30 ns rise/fall, central phase:
Ensemble of 1000 ions according to initial emittance
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400ns electron bunches, 30 ns rise/fall, central phase:
Phase space trajectory of a single example ion
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1/3 of bunches (random) with edge shift, ∆L = 50 ns:
Ensemble of 1000 ions according to initial emittance
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1/3 of bunches (random) with edge shift, ∆L = 50 ns:
Phase space trajectory of a single example ion
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Particle loss rate (assuming transverse aperture ±50mm)
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• Considering the simplified assumptions, result not terrible
• Explains dithering issue as well (not shown here)
• Stable bunch length/phase more important than we thought
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Conclusions

• Electron cooling with bunches
works without major surprises

• Dithering does not! (not with high
space-charge forces, anyway)

• Be careful to keep the bunch length
and phase stable
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