European XFEL Operational Experience

J-Lab Accelerator Seminar 18 Feb. 2021

Julien Branlard, for the XFEL operation team

Hamburg, DESY

OUTLINE

- The European XFEL
 - Introduction
 - RF station
- 2020
 - Machine stats
 - COVID-19 de(re)tune
 - High-/low-V linac setup
- Availability
 - XTL report
 - Operation team

- Automation
 - Dynamic heat-load compensation
 - LFD piezo automation
 - FSM trip recovery
- The high-V / low-V experiment
 - Statistics
 - Trip examples
- Outlook
 - Example: "big data" analysis

The European XFEL Accelerator

<u>njector</u>	Bunch compression
120 m	Two stage

130 MeV 354 m

8× 1.3 GHz 2.4 GeV

8× 3.9 GHz L1 1× 1.3-GHz RF station

L2 3x 1.3-GHz RF stations

Main Linac

1180 m

17.6 GeV (max)

20x 1.3-GHz RF stations

3 photon beam lines

6 experiments

demonstr. photon energies

SASE1: 6-30 keV

SASE2: 6-19 keV

SASE3: 0.5-3.2 keV

The European XFEL Accelerator (RF station)

The European XFEL Accelerator (RF station)

One RF station comprises*:

- 1× 10 MW klystron
- 32× TESLA-type 1,3-GHz cavities housed in 4 cryomodules
- 32× motorized power couplers
- 32x motorized tuners
- 64x piezo (actuator actuator / sensor)
- 36x motorized phase shifters (1/ cav + 1/ cryomodule)
- 100+ LLRF channels (probe, forward, reflected)

25 RF Stations

- 25 Klystrons
- 97 Cryomodules
- 776 1.3 GHz cavities

* Exception: A1 (injector) 1 CM

2020, year of the COVID-19

User stats

- 5640 operating hours
 - 6888 hours planned
- 1856 user hours (as planned)
 - with 95% availability
- 30 keV (world record) and17.8 keV (routine) photon energy

COVID (de)retune

March 2020

- Unclear if personnel on site could guarantee cold linac in case of cryo failure
- Preventive measure: detuning all 776 SRF cavities
- 2 shifts, 8 people
- April 2020: lockdown ("light" shutdown)
- May 2020
 - Remote facility operation possible
 - Retune all cavities (2 shifts, 8 people)

Lessons learnt

- Too long, too resource intensive
- 1-button automatic detuning (design phase!)
- Emergency plan ?

Linac Setup

Two modes of operation:

- low-V : for beam energies 11.0 14.0 GeV
- high-V: for beam energies 14.5 16.5 GeV

High-V

- Cavities operating at max gradient
 - → more radiation coming from RF
- Cavities operating with almost no RF overhead
 - → almost at quench limit
- Couplers, klystrons running with more power
 - → more arcs, sparks, etc..
- Overall, operating on the edge
 - → more trips

- high-voltage
- low-voltage
- up to bunch compressor (typical)

Monitoring the RF availability

XTL live report

GOOD week

Monitoring the RF availability

XTL live report

Comments

- RF availability > beam availability > photon availability
- "Goal" is 100%
- Until now, availability is extremely good
- Down time dominated by isolated events
- Systematic follow-up on issues causing more than 4 hours down time (8-D process)

Monitoring the RF availability

XTL live report

RF availability

Typical > 95%

Good week > 99%

■ Bad week > 90%

Dominant root causes

- RF (high/low power)
 - ► Many short trips (~minutes)
- Cryogenics
 - ► 1 major event (1.5 days)
- Operations
 - ► Not enough exception handling, conceptual automation mistakes, ...

The Linac Operations team

Cross-disciplinary team

- 5 6 regular members
 - ▶ Operations
 - ► Low and high power RF
 - ► Couplers and cavity
- Special topics:
 - ► Controls, cryo, MPS

Weekly meetings

- Review / tag the trip of the week
 - ► Availability
- A.O.B.
 - ► Workflow, procedures
 - ► Accelerator development
 - ► Maintenance
 - ► Etc...

Stations	Туре	Time	Duration	OnBeam	LinacDownTime	RootCause
A2-A21,A23-A25	LinacOff	Wed 18 Nov 2020 17:08:05	1.4 hours	On	1.4 hours	INFRASTRUCTURE: NETWORK_HARDWARE:NETWORK SWITCH
A22	Trip	Wed 18 Nov 2020 17:01:57	4.9 hours	On	43 seconds	LLRF: QUENCH_DETECT :{M3.C7}
A22	Trip	Wed 18 Nov 2020 16:25:38	4.9 hours	On	60 seconds	LLRF: QUENCH_DETECT :{M3.C7}
A22	Trip	Wed 18 Nov 2020 14:05:41	4.9 hours	On	22.1 minutes	LLRF: HARDWARE_FAULT: DCM / RADIATION
A11	RampDown	Wed 18 Nov 2020 13:36:20	15.5 minutes	On	62 seconds	KLYSTRON: MAINTENANCE
A18	Trip	Wed 18 Nov 2020 10:27:42	1.5 hours	On	1.5 hours	TIMING : COMMS_ERROR : REBOOT / RADIATION
A11	Trip	Tue 17 Nov 2020 16:20:09	2.3 minutes	On	2.3 minutes	KLYSTRON: GUN_ARC
A11	Trip	Tue 17 Nov 2020 14:57:27	2.2 minutes	On	2.2 minutes	KLYSTRON: GUN_ARC
A8	Trip	Tue 17 Nov 2020 13:05:10	1.8 minutes	On	1.8 minutes	LLRF: QUENCH_DETECT :{M2.C7}

Automation for RF operations

Dynamic heat load compensation

- Cold compressors need a regular He flow
- Avoid disturbance induced by RF changes
 - Quenches
 - Sudden massive gradient changes
- Dynamic heat load fluctuations compensated by heaters

Stable He level and pressure

Pdiss computation based on RF gradient, flat top duration, and quench alarms

Automation for RF operation

Lorentz force detuning compensation

- Following a gradient change
 - LFD compensation adaptation
 - 32 cavities simultaneously tuned
 - (16 cavities shown)

up / down

Automation for RF operations

Finite State Machine (1/2)

- Works as a sequencer
 - Ramp up / down
 - Station / machine –wise
- Works as high level monitoring server
 - Gathers interlock from diverse sources (klystron, modulator coupler, cryo, quenches, etc...)
 - Provides post mortem information (what tripped, when)
- Works as soft interlock
 - Compares RF set point to vector sum read back
 - Stops the RF if anything abnormal pops up


```
9.10.2019 A8.L3/AMPLTRIP ONSTATE big error between SP and VectorSUM (#mismatch)
A8.L3 21:03.08 9.10.2019 EqFSMmain::run: enter recover mode to startup
      21:03.08 9.10.2019 run initialize startup()
A8.L3 21:03.08 9.10.2019 KLYHVPLCTIMER ONSTATEKLYHVPLCTIMER ONSTATE : waiting for Kly HV to become stable
A8.L3 21:03.08 9.10.2019 A8.L3/AMPLTRIP ONSTATE big error between SP and VectorSUM (#mismatch)
```


Automation for RF operations

Finite State Machine (2/2)

- Ramp up example (trip recovery):
 - Starts the modulator and wait for HV to be stable
 - Notify cryo that a station will be ramped up
 - Ramps up RF open loop at given pace
 - Recovers previous operating gradient
 - Scales output drive to match set point (fine adjust.)
 - Closes the loop (FB)
 - Clears learning feed forward corrections and starts LFF
 - Start piezo tuning
 - (Enables beam loading compensation)
 - Places station on beam (if was previously on-beam)

Automation for RF operation

(KLM) Klystron Lifetime Monitoring

- Special module inside LLRF crate
- Monitors signals from high power chain
 - Pre-amplifier input output
 - Klystron input, output
 - Klystron high voltage, current
- Stops RF if an exception is observed
 - Compares behavior to model
 - Looks for abnormal behavior

- 31.08 18.10.2020 → 7 weeks at low-V
- 19.10 22.11.2020 → 5 weeks at high-V *

* Although the high-V linac configuration was only really needed for 1 user week

Monitor

- SEU
- LLRF system failures
- Cavity quenches
- Gradient limiters
- Radiation

 $= 31.08 - 18.10.2020 \rightarrow 7 \text{ M}$

= 19.10 - 22.11.2020 \rightarrow 5

* Although was only re

Monitor

- **SEU**
- LLRF system failures
- Cavity quenches
- Gradient limiters
- Radiation

- 31.08 18.10.2020 → 7 weeks at low-V
- 19.10 22.11.2020 → 5 weeks at high-V *

* Although the high-V linac configuration was only really needed for 1 user week

- Monitor
 - SEU
 - LLRF system failures
 - Cavity quenches
 - Gradient limiters
 - Radiation

USB RadCons (inside racks)

- 31.08 18.10.2020 → 7 weeks at low-V
- 19.10 22.11.2020 → 5 weeks at high-V *

* Although the high-V linac configuration was only really needed for 1 user week

- Monitor
 - SEU
 - LLRF system failures
 - Cavity quenches
 - Gradient limiters
 - Radiation

Increased SEU

Low-V: 6.3 SEU / week

Increased LLRF on-call interventions

on-call stats (Redmine)

L3 config	Number of calls/week	Time spent/week (hrs)	caused down time/week, incl. non-LLRF (hrs)
low-V	3.4	1.1	1.2
high-V	6.2	2.9	1.7
increase rate	81%	155%	44%

NOTE:

Of course, the increased intervention rate CANNOT solely be attributed to increased radiation. A large fraction is due to operating at the limit (quench, sparks, system stress)

		Total	Low-V	High-V
Availability	%	97.9	98.7	95.6
Total operation time	days	125.2	90.4	34.8
Number of events	hrs	300	124	176
Total down time	hrs	64.7	27.9	36.9

		Total	Low-V	High-V
Trips	hrs	40.1	13.5	26.6
Linac off (access)	hrs	18.3	10.7	7.6
Ramp down	hrs	3.5	1.8	1.7
Development	hrs	1.9	0.8	0.8

Heat load

Effective (average) cavity Q₀ from measured dynamic load

$$Q_{0,eff} pprox rac{f_{rep} \left(t_{fill} + t_{flat}
ight)}{(r/Q) P_{cryo}} \sum_{i=1}^{N_{cav}} \left\langle V_i^2 \right\rangle$$

where

$$\left\langle V_i^2 \right\rangle = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} V_i^2(t) \, dt$$

RF CONFIG	Time Frame	Average Dynamic Load (W)	Effective average Q ₀
REDUCED-V	01.09—15.10.2020	400	1.04×10 ¹⁰
HIGH-V	20.10—15.11.2020	600	0.98×10 ¹⁰

Field emitters

Example: A18.M3.C4

Procedure

- Park MARWIN at peak neutron radiation
- Detune / retune cavities one at a time until field emitter is found
- Detune found field emitter (immediate solution)

Some trip examples

Some trip examples

Spontaneous quench

- **A8.M2.C8**
 - Isolated quench event
 - Quench occurred at 22.8 MV/m
 - Cavity power limited during cryomodule tests (i.e. > 31.5 MV/m)

Some trip examples

Klystron instability

- **A13**
 - KLM (high power signals monitoring)
 - Detected reflected activity at input of klystron
 - Stops RF drive within usec

European XFEL

- Prevents rise of vacuum level in tube
- Next pulse is OK

Some trip example

Piezo induced disturbance

- A14.M1.C7
 - Faulty LFD compensation
 - Likely corrupted firmware (SEU)
 - Recovered with an FPGA power cycle

Outlook

- Going CW
 - ...
- Machine learning
 - . .
- "Big data" analysis
 - Model-based techniques
 - General likelihood of anomaly calculated
 - Goal is "smarter" online fault classification

Courtesy Annika Eichler

Thank you for your attention!

Special thanks to Nick Walker

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Julien Branlard MSK

julien.branlard@desy.de +49 (0) 40 8998 1599

