

New Reflectivity Test Station

Tyler Lemon
Detector Support Group
April 22, 2022

Contents

- New test station overview
- New components
 - Fiber-optic reflection probe
 - Compact CCD Spectrometer
 - Stabilized Tungsten-Halogen Broadband Source
 - Support arm
- New Test Station Program
- RICH-1 sample measurements

New Test Station

 Uses fiber optic reflection probe, compact spectrometers, and stabilized source for measurements

New Components Fiber Optic Reflection Probe

- Thorlabs item # RP26
- Flexible fiber optic cable eliminates need to align reference light with detector
 - Only alignment needed is probe with mirror
- To account for attenuation of fiber, a one-time calibration was done with light source and spectrometers to determine a correction factor

4/22/2022

New Components Compact CCD Spectrometer (CCS)

- Thorlabs part # CCS200
 Two required
- Measures power across full spectrum of input light
- Includes DAQ program and full suite of LabVIEW drivers

Specification	Value
Wavelength Range	200 - 1000 nm
Spectral Accuracy	<2 nm FWHM @ 633 nm
Slit (W x H)	20 μm x 2 mm
Grating	600 Lines/mm, 800 nm Blaze
Fiber Connector	SMA 905
Detector Range (CCD Chip)	200 - 1100 nm
CCD Pixel Size	8 μm x 200 μm (8 μm pitch)
CCD Sensitivity	160 V / (lx · s)
CCD Pixel Number	3648
Resolution	4 px/nm
Integration Time	10 μs - 60 s
Scan Rate Internal Trigger	Max 200 Scans/s
S/N Ratio	≤2000 : 1
Interface	USB 2.0
Dimensions (L x W x H)	122 mm x 79 mm x 29.5 mm

New Components

Stabilized Tungsten-Halogen Broadband Source

- Thorlabs part # SLS201L
- Has built-in output stabilization circuit that ensures output power is steady

0 0	
	*Liter Lock

Spec	Value
Wavelength Range	360 - 2600 nm
Peak Wavelength	1000 nm
Bulb Electrical Power	9 W
Output Coupling	Fiber Coupled (SMA) and Free Space
Fiber-Coupled Optical Power	10 mW
Free-Space Optical Power	500 mW
Beam Divergence without Fiber Coupler	8.2°
Output Power Stability	<0.05%
Optical Power Drift per Hour	0.01% (Typical)
Optical Power Drift per °C	0.1% (Typical)
Color Temperature	2796 K
Color Temperature Stability	±15 K
Lifespan	10 000 Hours (Avg.)
Dimensions (L × W × H)	8.52" × 2.17" x 2.26"

Output stabilization circuit

New Components Probe Support Arm

- McMaster-Carr heavy duty, ball grip, positioning arm
- Arm is bolted to 1" grid on optical table
- Two 90° pivot points
 - Can also swivel 360°
- Two telescoping arms
 - Extends from 6.75" to 10.75"

New Test Station Program

- Live feed from both spectrometers and reflectivity calculation for alignment
- Data capture and logging
 - Captures user-set number of samples from both CCSs and calculates reflectivity
 - Averages over all samples
 - Logs all data
- Creates summary file with average results for each spot

Procedure

- Run DAQ program
- Align probe with mirror using live feed from DAQ program
- Click "Capture Data" button
- Wait until done (a few seconds)
- Repeat steps 2-4 until all desired areas are measured

RICH-1 Mirror Sample #23

- Three spots measured
 - All at visually good areas

Spot 1 - Reflectivity

Wavelength [nm]

1.0

. ∑ 0.6

RICH-1 Mirror Sample #24

- Two spots measured
 - One at a visually good area
 - One at purposefully smudged, visually bad area

Spot 1: Good Area
Overall Average Reflectivity: 91 %

Spot 2: Bad Area
Overall Average Reflectivity: 86 %

Conclusion

- New test station uses two compact CCD spectrometers to measure light reflected off of a mirror
 - Light directed using fiber optic cable
 - Light source is stabilized with consistent power

- New components greatly improve alignment procedure
- Samples from RICH-1 measured and confirmed to have reflectivity of > ~90 % in visually good locations
 - One visually bad area had reflectivity of ~84%

