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OUTLINE OF LECTURE 2

★Renormalization within Lattice QCD 
! perturbatively 
! non-perturbatively 

★Hadron spectroscopy 

★Key points of Lecture 1



★ Lattice QCD is renormalizable, thus QCD must recover upon continuum 
limit (removal of regulator)  

★ Lattice regularization has a consequence of that (bare) lattice quantities  
depend on lattice spacing, α 

★ However, physical quantities cannot depend on regulator, thus bare 
quantities must be tuned with α, so that observables are not affected 

★ Renormalization:  
! UV divergences must be removed prior continuum limit 
! Divergences canceled by adjusting the parameters of the action 
! physical results are expressed via measurable parameters  
(not via parameters in bare Lagrangian)
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Renormalization



★ Let      be a measurable lattice quantity with mass dimension,      , and in 
 

dimensionless form is written as  

★ Existence of continuum limit: 

★ Close to the continuum limit (α~0): 
 

and we can determine      as a function of a measurable quantity and α 

★ Thus, a global           is expected for α~0, applicable to all quantities 

★ Good quantity is quark antiquark static potential, for a pair separated 
by distance R (physical units), and on lattice 
 

Despite the variation of α,                   must be invariant:
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Renormalization Group Equation
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Renormalization Group Equation

a
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★ RGE gives a definition for the Callan-Symanzik β-function (lattice) 
 
 

★ βL-function dictates the relation between g0 and a 

★ β-function expanded in terms of g0 (asymptotic freedom):  
 
 
 
 
b0 (LO) and b1 (NLO) universal, beyond NLO depend on regulator

μ̄ : renormalization scale
g (g0) : renormalized (bare) coupling

β(g) = − b0g3 − b1g5 − b2g7 + 𝒪(g9)

βL(g0) = − b0g3
0 − b1g5

0 − bL
2 g7

0 + 𝒪(g9
0) b0 =

1
16π2 (11 −

2
3

NF)
b1 =

1
(16π2)2 (102 −

38
3

NF)
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Renormalization
★ Calculation of physical quantities directly on the lattice does not 

require renormalization (e.g., hadron masses) 

★ Renormalization necessary when one cannot access physical 
quantities directly (e.g., Form Factors) 

★ In most cases renormalization is multiplicative (absence of mixing)  
 
 

★ Renormalization procedure not unique: 
! Schroedinger functional 
! non-perturbatively in numerical simulations 
! perturbatively to some order in g02. 
! gradient flow 
! Ward Identities

ψ R = Z1/2
ψ ψbare , AR = Z1/2

A Abare , (ψ̄Γψ)R = Z 1/2
Γ (ψ̄Γψ)bare
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Renormalization
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require renormalization (e.g., hadron masses) 

★ Renormalization necessary when one cannot access physical 
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! Schroedinger functional 
! non-perturbatively in numerical simulations 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! gradient flow 
! Ward Identities

ψ R = Z1/2
ψ ψbare , AR = Z1/2

A Abare , (ψ̄Γψ)R = Z 1/2
Γ (ψ̄Γψ)bare

Fermion bilocal operator 
with Dirac structure Γ
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Non-perturbative Renormalization
★ Preferred for purely non-perturbative estimates  

(low-energy sector of QCD) 

★ Captures the diverging behavior of matrix elements  
to renormalize 

★Widely used scheme: RI-type (regularization independent) 

★ Typically two important choices to make: 
! renormalization scale μ 
! renormalization scheme 
(exceptions include renormalization of vector and  
axial-vector currents ) 

★ Results are converted to a common scheme and scale



M. Constantinou, HUGS School 2019 �7

Non-perturbative Renormalization
★ Preferred for purely non-perturbative estimates  

(low-energy sector of QCD) 

★ Captures the diverging behavior of matrix elements  
to renormalize 

★Widely used scheme: RI-type (regularization independent) 

★ Typically two important choices to make: 
! renormalization scale μ 
! renormalization scheme 
(exceptions include renormalization of vector and  
axial-vector currents ) 

★ Results are converted to a common scheme and scale

I will return to this topic in Lecture 3 (relevant to hadron structure)



M. Constantinou, HUGS School 2019 �8

Lattice Perturbation Theory
★ Lattice formulation extensively used for study of  

non-perturbative region  

★ Perturbation theory is also applicable on the lattice  
(small-coupling expansion in the weak-coupling regime) 
Extraction of αstrong, β-function, etc 

★ Lattice pert. theory very useful for computing  
renormalization functions 
(especially when there is mixing between operators) 

★ Lattice pert. theory can be used to improve  
non-perturbative estimates 
(subtraction of finite-α effects)
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Lattice Perturbation Theory
★ Lattice formulation extensively used for study of  

non-perturbative region  

★ Perturbation theory is also applicable on the lattice  
(small-coupling expansion in the weak-coupling regime) 
Extraction of αstrong, β-function, etc 

★ Lattice pert. theory very useful for computing  
renormalization functions 
(especially when there is mixing between operators) 

★ Lattice pert. theory can be used to improve  
non-perturbative estimates 
(subtraction of finite-α effects)

I will give selected examples demonstrating the power of lattice pert. theory
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What should we  
first study  

in Lattice QCD?
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What should we  
first study  

in Lattice QCD?

Start from quantities that are (relatively) easy to 
compute, and can be compared against 

experimental data
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First goals of Lattice QCD
Reproduce the low-lying spectrum

Mesons                                                        Baryons

Quark propagator

e.g. pion, kaon                                                e.g. proton
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First goals of Lattice QCD
Reproduce the low-lying spectrum

Mesons                                                        Baryons

Quark propagator

creation point

annihilation point
propagator

e.g. pion, kaon                                                e.g. proton

Most costly part of calculation
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Calculation of Hadron mass
Extraction of a hadron’s mass from its propagator:

★ Two-point correlator (hadron level, Heisenberg picture):
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Εn(0) = mn
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Calculation of Hadron mass
Extraction of a hadron’s mass from its propagator:

★ Two-point correlator (hadron level, Heisenberg picture):

Insertion of complete 
set of momentum 
and energy states: 

Sum over x gives δ(κ), 
Εn(0) = mn

Only terms that have same 
quantum numbers as χ survive

★ The mass of the hadron appears, for the nth state
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Calculation of Hadron mass
★ Overlap with ground state, excitations, other hadron states. Thus:

★ For large enough t the exponential for excited states and multi-
hadron states, becomes very small, thus ground-state dominance.

C(t)
=

t > > 1
1

2mH
|⟨Ω |χ( ⃗0 ,0) |H( ⃗0 ,0)⟩ |2 e−mHt
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Calculation of Hadron mass
★ Overlap with ground state, excitations, other hadron states. Thus:

★ For large enough t the exponential for excited states and multi-
hadron states, becomes very small, thus ground-state dominance.

C(t)
=

t > > 1
1

2mH
|⟨Ω |χ( ⃗0 ,0) |H( ⃗0 ,0)⟩ |2 e−mHt

mass of ground state

a mH
eff(t) = log ( C(t)

C(t + 1) )
One may proceed with a 
constant or multi-state fit

Attend practice session 
by Luca Leskovec !

Excited states suppressed
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Calculation of Hadron mass

★ Choose the number of omitted 
data in each bin (defines # bins) 

★ Calculate the average over 
remaining data in each bin 

★ Calculate the average of the bins 

★ Calculate the statistical error of 
the above average

Results MUST be accompanied by uncertainties

Jackknife resampling  
for variance and bias estimation
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Calculation of Hadron mass

★ Choose the number of omitted 
data in each bin (defines # bins) 

★ Calculate the average over 
remaining data in each bin 

★ Calculate the average of the bins 

★ Calculate the statistical error of 
the above average

Results MUST be accompanied by uncertainties

D4D1

Ndata = 4, Nomit = 1 , Nbin = 4

Di = ∑
j≠i

dj

Ndata − Nomit

D̄ = ∑
i

Di

Nbin

dD̄ = ∑
i

(Di − D̄)2 Nbin − 1
Nbin

Jackknife resampling  
for variance and bias estimation
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★ One of main research directions of Lattice QCD with great successes 
(but beyond the scope of these lectures) 

★ Calculation of:  
! low-lying baryon and meson states 
! Excited and exotic hadrons 
! Scattering and resonance states

20-plet of spin-1/2 baryons                        20-plet of spin-3/2 baryons

No charm quarks

Two charm quarks

One charm quark

Hadron Spectroscopy



[C. Alexandrou et al.,Phys. Rev. D 90, 074501 (2014)]

Low-lying meson and baryon states

BMW collaboration, Science 322, 1224 (2008)
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Hadron Spectroscopy



[C. Alexandrou et al.,Phys. Rev. D 90, 074501 (2014)]

Low-lying meson and baryon states

BMW collaboration, Science 322, 1224 (2008)
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[C. Alexandrou et al.,Phys. Rev. D 90, 074501 (2014)]

Low-lying meson and baryon states

BMW collaboration, Science 322, 1224 (2008)

Stable states below decay thresholds

offset: -4000 MeV

A. S. Kronfeld, Annu. Rev. Nucl. Part. Sci. 62 (2012) 265, arXiv:1209.3468
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Hadron Spectroscopy

no experimental value

Lattice data more 
accurate than 

experimental ones

Open symbols also used 
to fix parameters, such as 

lattice spacing
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Hadron Spectroscopy

Excited and exotic hadrons

L. Liu et al. (Hadron Spectrum Collaboration), JHEP 07, 126 (2012), arXiv:1204.5425

charmonium spectrum (< 4.5 GeV) 
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Summary of Lecture 2
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Key points of Lecture 2

★ Renormalization is an indispensable part of lattice calculations 

★ Well-defined perturbative and non-perturbative renormalization 
procedures (see also Lecture 3) 

★ Calculation of nucleon and pion mass has been an important 
starting point for lattice QCD 

★ Hadron Spectroscopy has advanced tremendous and can provide 
predictions and input for experiments



Thank you


