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Why study Leptons and Nuclei (nuclear scale and beyond) 
Nuclear structure and dynamics at scale of inter-nucleon spacing
Quasi-elastic scattering : electrons and neutrinos (even 0+ to 0+)
Neutrino Properties:  hierarchy, CP violation, double beta decay
Astrophysical Environments:  neutron star mergers, supernovae
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From Nuclear to Hadronic Scales

2

(DUNE) [22] will be able to measure sub-GeV atmo-
spheric neutrinos and extract information on �CP com-
plementary to the accelerator neutrino program. In addi-
tion to �CP , the study of sub-GeV atmospheric neutrinos
will have major impact in the determination of the di↵use
supernova neutrino background and the neutrino back-
ground in dark matter direct detection experiments, as
well as in searches for new physics in the neutrino sector.

II. PHYSICS WITH LOW-ENERGY
ATMOSPHERIC NEUTRINOS

In general terms, neutrino oscillations are driven by
a phase / (�m2

ij/eV2)(L/km)(GeV/E), where L is the
distance traveled between neutrino production and de-
tection, E is the neutrino energy, and �m2

ij ⌘ m2
i � m2

j
is the squared mass splitting. When E & 1 GeV, os-
cillations are induced largely by the aptly-named atmo-
spheric mass splitting |�m2

31| ' 2.5 ⇥ 10�3 eV2 [23, 24],
and they develop over scales L ⇠ O(RE), the radius of
the Earth. Oscillations of atmospheric neutrinos with en-
ergies 100 MeV < E < 1 GeV, are governed by both the
atmospheric mass splitting and the smaller solar mass
splitting, �m2

21 ' 7.4 ⇥ 10�5 eV2 [25–30]. In what fol-
lows, we will consider two aspects of major significance
to our analysis, CP violation and matter e↵ects. We
adopt the usual parametrization for neutrino mixing [31].
To set convention, we define the zenith angle such that
cos ✓z = �1 corresponds to neutrinos coming from di-
rectly below the detector, while cos ✓z = 0 indicates the
horizon direction.

First we discuss the e↵ects of �CP in oscillations of
sub-GeV neutrinos. In vacuum, for simplicity, the CP -
violating term in neutrino oscillation probability is given
by [32]

PCP = �8Jr sin �CP sin �21 sin �31 sin �32, (1)

which includes the Jarlskog invariant [33, 34] Jr sin �CP

(in our convention) and �ij ⌘ �m2
ijL/4E are the os-

cillation phases. Oscillations of beam neutrinos probe
the atmospheric splitting �31 ⇠ O(1), while �21 ⌧ 1.
There, the CP term is suppressed by �m2

21/�m2
31 ⇥

⇡/2 ⇠ 1/20 due to the fact that oscillations driven
by �m2

21 do not have time to develop. This yields
PCP ' �0.4Jr sin �CP sin �31 sin �32. Sub-GeV atmo-
spheric neutrino oscillations, on the other hand, probe
the solar splitting. In this case, the oscillations driven
by �m2

31,32 are fast and average out. The result-
ing factor is just 1/2, leading to a much larger CP -
violating term relative to beam neutrinos, namely PCP '
�4Jm

r sin �CP sin �21 with �21 ⇠ O(1).
In Fig. 1, we present several oscillation probability

curves1 as function of neutrino energy for ⌫e ! ⌫e (black)

1
See https://imgur.com/HoWUniu for an animation of how �CP
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FIG. 1. Oscillation probabilities for ⌫e ! ⌫e (black), ⌫e ! ⌫µ
(blue), and ⌫µ ! ⌫e (dashed red) for various values of the
zenith angle cos ✓z as indicated, and �CP = 0 (top panel)
or �CP = 3⇡/2 (all other panels). Earth’s matter profile was
implemented using the PREM model [35]. In the upper panel,
the red and blue lines lie on top of each other.

⌫e ! ⌫µ (blue) and ⌫µ ! ⌫e (dashed red), various zenith
angles and �CP = 0 (upper panel) or �CP = 3⇡/2 (all
other panels). Focusing on the blue and red curves in
the first two panels, we observe a large e↵ect of �CP , as
a non-zero value of this phase splits out the ⌫µ ! ⌫e

and ⌫e ! ⌫µ appearance probabilities. This large ef-
fect will enhance the sensitivity of sub-GeV atmospheric
neutrinos to �CP . The second feature that stands out is
the impact of di↵erent zenith angles, which is related to
matter e↵ects. We turn our attention to them now.

The second crucial feature of sub-GeV atmospheric

changes oscillation probabilities as a function of zenith angle and

neutrino energy.

Oscillation Probabilities for 
Atmospheric Neutrinos

Kelly, et al, arXiv:1904.02751 

Double Beta Decay

Pastore, et al; PRC 2018

https://arxiv.org/abs/1904.02751


DUNE T2K

Accelerator Neutrino Experiments 
wide range of neutrino energies  

importance of oscillations/cross sections for energies ~1-3 GeV



•Scaling with momentum transfer : ‘y’-scaling incoherent sum over 
scattering from single nucleons - scaling of 1st kind

•Target independence:  Cross section nearly independent of  
nuclear target (after counting nucleons) - `superscaling’

quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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Nuclear Scale:
Quasi-elastic scattering



Quasi-Elastic Scattering and 
Plane Wave Impulse Approximation

Incorporates incoherent scattering of single nucleons:
n(k) or spectral function S(k,w)
and single-nucleon form factors



Single-Nucleon Momentum Distributions
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Figure 2: Scaling function f(ψ′) as function of ψ′ for all nuclei A ≥ 12 and all
kinematics. The values of A corresponding to different symbols are shown in the
insert.

For helium, additional data at low q were measured by Zghiche et al., Dytman et
al., Meziani et al., Sealock et al. and von Reden et al. [14, 20]-[24]; high-q data
were obtained by Day et al. and Rock et al. [25, 26]. For carbon, low momentum
transfer data are available from experiments performed by Barreau et al., Baran
et al. and O’Connell et al. [27]-[30]; at high q cross sections are available from the
experiments of Day et al. and Heimlich et al. [25, 31]. For oxygen an experiment
has been performed by Anghinolfi et al. [32]. For medium-weight nuclei the data
available include those for aluminum at high q measured by Day et al. [25], and
the ones for calcium measured by Deady et al., Meziani et al., Yates et al. and
Williamson et al. [33]-[36] at low q. For iron experiments have been performed by
Altemus et al., Meziani et al., Baran et al., Sealock et al. and Hotta et al. at low
q [37, 34, 29, 23, 38]; at high q measurements have been made by Day et al. and
Chen et al. [25, 39]. For heavy nuclei inclusive cross sections have been measured
by Day et al. for gold at high q [25], and by Zghiche et al., Blatchley et al. and
Sealock et al. for nuclei between tungsten and uranium at low q [20, 40, 23].

Not all of these data can be used, however, as some have not been corrected
for radiative effects, are known to have problems such as “snout scattering” or
have a floating normalization; some data are only available in the form of figures,
but not as numerical values, and thus are not useful in the present context.

To begin with (see also [13]), we have taken the available data for the nuclei

Scaling of the 1st kind (w/ p)
Donnelly & Sick (1999)



duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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But, scattering from a single nucleon not the whole story

Scaled longitudinal vs.  
transverse scattering from 12C

from Benhar, Day, Sick, RMP 2008
data Finn, et al 1984
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FIG. 1. Nearest neighbor probability density at nuclear matter density for non-interacting Boltz-

mann (distinguishable) particles (black circles), free nucleons (red squares) and with realistic in-

teractions (blud diamonds).

It is not surprising that two-nucleon processes of one-pion-range play an important role

in quasi-elastic scattering at moderate momentum transfers. The central density of atomic

nuclei is ⇠0.16 fm�3, corresponding to a Fermi momentum kF of ⇠1.35 fm�1 or 270 MeV/c.

A simple cubic solid at ⇢ = 0.16 fm�3 would have a nearest-neighbor distance or lattice

spacing of ⇠ 1.9 fm. A liquid will have fluctuations that produce, on average, smaller

nearest neighbor distances. In Fig. 1 we plot the distribution of nearest neighbor distances

for free Boltzman (distinguishable) particles at nuclear matter density. A simple density

response for this system would be fully incoherent. We also plot the nearest neighbor distance

distributions for free and interacting nucleons at the same density. These distributions all

peak at around 1.1 fm, very similar to the pion potential range. These considerations also

fit with the picture that has emerged from ab initio studies of nuclear structure [26], that

the two-nucleon probability density as function of the relative separation rij peaks at about

1 fm for nucleon pairs in spin/isospin states S/T =0/1 (quasi-bound 1S
0

channel) and 1/0

(deuteron-like channel), in which the one-pion-exchange interaction plays a major role.

The relevant corresponding relative pair momentum is ⇡/rij ⇠ 500 MeV/c. Only at

momenta much higher than this—when the probability of the nearest-neighbor being sig-

nificantly decreases—can the scattering be regarded as entirely incoherent, and many-body

6

Nearest-neighbor distances
in nuclear matter



Electron Scattering:
Longitudinal and Transverse Response

RT (q,!) =
X

f

h0| j†(q) |fihf | j(q) |0i �(w � (Ef � E0))

Transverse (current) response:

RL(q,!) =
X

f

h0| ⇢†(q) |fihf | ⇢(q) |0i �(w � (Ef � E0))

Longitudinal (charge) response:

Requires models of nuclear interactions and currents
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LO (ν = 0) NLO (ν = 2) NNLO (ν = 3)

N3LO (ν = 4)

FIG. 1: Two–nucleon force up to N3LO. Solid (dashed) lines denote nucleons (pions). Solid dots, filled circles, filled rectangles and crossed
circles refer to vertices with ∆i = 0, 1, 2 and 4, respectively.
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FIG. 2: np differential cross section and vector analyzing power at Elab = 25 MeV (left panel), Elab = 50 MeV (middle panel) and Elab = 96
MeV (right panel). The light (dark) shaded bands show the NNLO (N3LO) results. The Nijmegen PWA result is taken from [17]. For data see
[15].

chiral symmetry. Consequently, the chiral order ν is bounded
from below and for any given ν only a finite number of dia-
grams needs to be taken into account. Notice further that the
boundary ν∏ 2N°4, which follows from eq. (2) for connec-
ted diagrams, implies a rather natural picture, in which nu-
cleons interact mainly via 2N forces while many–body forces
provide small corrections.

As shown in Fig. 1, the general structure of the NN force in
the chiral EFT approach can be expressed as

V2N =VNN+V1π+V2π+V3π+ . . . , (3)

where the NN contact terms VNN and the pion–exchange con-
tributions can be obtained order–by–order, see eqs. (1) and

(2):

VNN = V (0)
NN +V (2)

NN +V (4)
NN + . . . ,

V1π = V (0)
1π +V (2)

1π +V (3)
1π +V (4)

1π + . . . ,

V2π = V (2)
2π +V (3)

2π +V (4)
2π + . . . ,

V3π = V (4)
3π + . . . . (4)

Here the superscript means the chiral order ν. The NN poten-
tial was first worked out up by Ordóñez, Ray and van Kolck
[5], who derived an energy–dependent, non–hermitian two–
nucleon (2N) potential up to next–to–next–to–leading order
(NNLO) in the chiral expansion and applied it to the nucleon–
nucleon system. The explicit energy dependence of the po-
tential is a severe complication for applications in three– (3N)
and more–nucleon systems. Energy–independent expressions
for the chiral potential at NNLO have been derived by seve-
ral groups independently using different methods [6–8] and

Basic building blocks: Nuclear interactions and currents

NN interactions

NN currents

856 Brazilian Journal of Physics, vol. 35, no. 3B, September, 2005

NLO NNLO N3LO Exp
Ed [MeV] °2.171 . . .°2.186 °2.189 . . .°2.202 °2.216 . . .°2.223 °2.224575(9)
AS [fm°1/2] 0.868 . . .0.873 0.874 . . .0.879 0.882 . . .0.883 0.8846(9)
ηd 0.0256 . . .0.0257 0.0255 . . .0.0256 0.0254 . . .0.0255 0.0256(4)

TABLE I: Deuteron observables at NLO, NNLO and N3LO in chiral EFT in comparison to the data.

FIG. 3: 3N force at NNLO. For notation see Fig. 1
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FIG. 4: Nd elastic observables at 65 MeV.

applied to the 2N system in [9]. Recently, N3LO correc-
tions to the 2N force have been calculated by Kaiser [10–
13] and applied to study the properties of the 2N system in
[14, 15]. In our N3LO analysis [15], a novel regularization
scheme for pion loop integrals in the 2π–exchange potential
is applied, which is based on the spectral–function representa-
tion [16] and allows for a better separation between the long–
and short–distance contributions compared to dimensional re-
gularization. Within this scheme, we found the 3π–exchange
contribution to the potential to be negligibly small. We have
fixed 24 LECs related to contact interactions with up to four
derivatives from a fit to np phase shifts in S–, P– and D–waves
and the corresponding mixing angles.

The resulting potential at N3LO leads to an accurate des-
cription of the phase shifts and the low–energy observables in
the 2N system. In Fig. 2 we show the NNLO and N3LO results
for np differential cross section and vector analyzing power
at three different energy. The bands correspond to the varia-
tion of the cut–offs in the spectral–function representation of
the potential and in the Lippmann–Schwinger equation. They
may serve as a rough estimation of the theoretical uncertainty,
which at N3LO is expected to be of the orderª 0.5%, 7% and
25% at laboratory energy ª 50, 150 and 250 MeV, respecti-
vely, see [15] for more details.

In Table I we show our predictions for the deuteron binding
energy, asymptotic S–wave normalization AS and asymptotic
D/S ratio at various orders in chiral EFT. All these observa-
bles are well described at N3LO.

III. THREE AND MORE NUCLEONS

3N and 4N systems have been studied at NLO [18] and
NNLO [19] in the chiral EFT framework solving rigorously
the Faddeev–Yakubovsky equations in momentum space.
Chiral 3N force starts formally to contribute at NLO (ν = 2),
see eq. (2). It is, however, well known that the leading 3N
force at this order vanishes provided one uses an energy–
independent formulation such as the method of unitary trans-
formation [8, 20], see also [21–23]. Consequently, only
the 2N interaction needs to be taken into account at NLO,
which is already completely fixed from the 2N system. The
first nonvanishing 3N forces appear at NNLO and are given
by the diagrams shown in Fig. 3 [19, 22]. While the 2π–
exchange contribution is parameter–free, the 1π–exchange
and contact interactions depend on one parameter each. These
two parameters cannot be determined in the 2N system and
were fixed from the triton binding energy and the nd doublet
scattering length. Our prediction for the α–particle binding
energy based upon the resulting parameter–free 3N Hamilto-
nian, BE(4He) = °29.51 . . .° 29.98 MeV, agrees well with
the empirical (corrected for missing nn and pp forces) num-
ber, °29.8 MeV.
We also observe good description of the 3N scattering data

at NNLO at low and intermediate energies. For example, dif-
ferential cross section and vector analyzing power for elastic
Nd scattering at Elab = 65 MeV are shown at NLO (light sha-
ded band) and NNLO (dark shaded band) in Fig. 4.
Recently, first and very promising parameter–free results

for the 1+ ground and 3+ excited states of 6Li were obtai-
ned using chiral forces at NLO and NNLO within the no–core
shell model framework [24]. At NNLO both the ground and
excited state energies are reproduced within the theoretical un-
certainty of 5.7% and 7.6% (based on the cut–off variation),
respectively.

IV. SUMMARY AND OUTLOOK

Chiral EFT provides a systematic framework to study the
low–energy dynamics of hadronic systems. Recent applica-
tions in the few–nucleon sector show promising results. The
two–nucleon system has been studied at N3LO. Accurate re-
sults for the deuteron and low–energy scattering observables
have been obtained. 3N, 4N and 6N systems have been analy-
zed at NNLO. For the first time, the chiral 3N force has been
included in few–body calculations. In the future, N3LO analy-
sis of the 2N system should be extended to heavier systems.
One should also consider reactions with external electroweak

3N interactions
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gs ex
LO 2.334 2.150

N2LO –3.18⇥10�2 –2.79⇥10�2

N3LO(CT) 2.79⇥10�1 2.36⇥10�1

OPE –2.99⇥10�2 –2.44⇥10�2

N4LO(2b) –1.61⇥10�1 –1.33⇥10�1

N4LO(3b) –6.59⇥10�3 –4.86⇥10�3

TABLE II. Individual contributions to the 7Be ✏-capture
Gamow-Teller RMEs obtained at various orders in the chiral
expansion of the axial current (⇤=500 MeV) with VMC wave
functions. The rows labeled LO and N2LO refer to, respec-
tively, the first term and the terms proportional to 1/m2 in
Eq. (1); the rows labeled N3LO(CT) and OPE, and N4LO(2b)
and N4LO(3b), refer to panel (a) and panels (b) and (f), and
to panels (c)-(e), (g) and panel (h) in Fig. 1, respectively.

The contributions of the axial current order-by-order in
the chiral expansion are given for the GT matrix ele-
ment of the 7Be ✏ capture in Table II. Those beyond
LO, with the exception of the CT at N3LO, have oppo-
site sign relative to the (dominant) LO. The loop cor-
rections N4LO(2b) are more than a factor 5 larger (in
magnitude) than the OPE. This is primarily due to the
accidental cancellation between the terms proportional
to c3 and c4 in the OPE operator at N3LO (which also
occurs in the tritium GT matrix element [27]). It is also
in line with the chiral filter hypothesis [35–37], according
to which, if soft-pion processes are suppressed—as is the
case for the axial current—then higher-order chiral cor-
rections are not necessarily small. Indeed, the less than
3% overall correction due to terms beyond LO reported
in Table I (row N4LO) comes about because of destruc-
tive interference between two relatively large (⇠ 10%)
contributions from the CT and the remaining [primarily
N4LO(2b)] terms considered here.

Ratios of GFMC to experimental values for the GT
RMEs in the 3H, 6He, 7Be, and 10C weak transitions
are displayed in Fig. 2—theory results correspond to
�EFT axial currents at LO and including corrections
up to N4LO. The experimental values are those listed
in Table I, while that for 3H is 1.6474(24) [27]. These
values have been obtained by using g

A

=1.2723(23) [38]
and K/

⇥
G2

V

�
1 +�V

R

�⇤
=6144.5(1.4) sec [39], where

K =2⇡3 ln 2/m5
e

=8120.2776(9) ⇥ 10�10 GeV�4 sec and
�V

R

= 2.361(38)% is the transition-independent radiative
correction [39]. In the case of the � decays, but not for
the ✏ captures, the transition-dependent (�0

R

) radiative
correction has also been accounted for. Lastly, in the ✏
processes the rates have been obtained by ignoring the
factors B

K

and B
L1 which include the e↵ects of electron

exchange and overlap in the capture from the K and L1
atomic subshells. As noted by Chou et al. [14] following
Bahcall [40, 41], such an approximation is expected to be
valid in light nuclei, since these factors only account for

1 1.1 1.2

Ratio to EXPT

10C 10B

7Be 7Li(gs)
6He 6Li
3H 3He

7Be 7Li(ex)

gfmc 1b
gfmc 1b+2b(N4LO)
Chou et al. 1993 - Shell Model - 1b

FIG. 2. (Color online) Ratios of GFMC to experimental
values of the GT RMEs in the 3H, 6He, 7Be, and 10C weak
transitions. Theory predictions correspond to the �EFT axial
current in LO (blue circles) and up to N4LO (magenta stars).
Green squares indicate ‘unquenched’ shell model calculations
from Ref. [14] based on the LO axial current.

a redistribution of the total strength among the di↵erent
subshells (however, it should be noted that B

K

and B
L1

were retained in Ref. [11], and led to the extraction of
experimental values for the GT RMEs about 10% larger
than reported here).
We find overall good agreement with data for the 6He

�-decay and ✏ captures in 7Be, although the former is
overpredicted by ⇠ 2%, a contribution that comes almost
entirely from 2b and 3b chiral currents. The experimental
GT RME for the 10C �-decay is overpredicted by ⇠ 10%,
with two-body currents giving a contribution that is com-
parable to the statistical GFMC error. The presence of
a second (1+; 0) excited state at ⇠ 2.15 MeV can poten-
tially contaminate the wave function of the 10B excited
state at ⇠ 0.72 MeV, making this the hardest transition
to calculate reliably. In fact, a small admixture of the
second excited state (' 6% in probability) in the VMC
wave function brings the VMC reduced matrix element
in statistical agreement with the the measured value, a
variation that does not spoil the overall good agreement
we find for the reported branching ratios of 98.54(14)%
(< 0.08%) to the first (second) (1+, 0) state of 10B [14].
Because of the small energy di↵erence of these two levels,
it would require an expensive GFMC calculation to see if
this improvement remains or is removed; in lighter sys-
tems we have found that such changes of the trial VMC
wave function are removed by GFMC.

We note that correlations in the wave functions sig-
nificantly reduce the matrix elements, a fact that can
be appreciated by comparing the LO GFMC (blue cir-
cles in Fig. 2) and the LO shell model calculations
(green squares in the same figure) from Ref. [14]. More-
over, preliminary variational Monte Carlo studies, based

• Contact fit to Tritium beta decay 
• Substantial reduction due to two-body correlations
• Modest 2N current contribution
• Good description of experimental data, explains ‘quenching’
• Many calculations with larger nuclei underway

Pastore, et al, 2017
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FIG. 6 VMC proton momentum distributions in T = 0 light
nuclei.

tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
be formulated analogously to Eqs. (66,68), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Je↵er-
son Laboratory. In an (e, e0pN) experiment on 12C at
JLab, a very large ratio ⇠ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm�1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ⇢pN (q,Q = 0) are shown in Fig. 7 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm�1, while the pn pairs
are in deuteron-like 3S1 �3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.
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to-back (Q = 0) i pair momentum distributions for T = 0
nuclei.
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FIG. 8 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm�1.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 8, where ⇢pp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast,
the deuteron-like distribution in pn pairs is maintained
as Q increases, as shown in Fig. 9, with only a gradual
decrease in magnitude because there are fewer pairs at
high total Q. Recently, these momentum distributions
for 4He have been tested in new JLab experiments and
found to predict the ratio of pp to pn pairs at higher
missing momentum very well (Korover et al., 2014).
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Figure 2. An example of data for the ratio R

EMC

(A, x) collected in DIS (left panel with 0  x  0.8) and QE experiments
(right panel with 0.8  x  2.0) on 12C showing the universal shape of the x dependence of the EMC effect (note the different
scales for the y axes). The data are often separated into regions labeled for the favored explanation for the behavior in that
region. Also shown are an illustrative linear fit to the EMC region of the Gomez et al. data (left panel) and an illustrative fit
to the plateau/SRC region (right panel). The data are from Amaudruz et al. [25], Gomez et al. [26], and Seely et al. [27] (left
panel), and Fomin et al. [28, 29] (right panel).

in a given system. Effective field theory has been success-
fully applied to many aspects of meson [33], single- [34],
and multi-nucleon systems [35–40]. In particular, chiral
EFT has been applied to parton distribution functions
(PDFs) in the meson, single-nucleon [41–49], and multi-
nucleon sectors [50, 51], as well as to other light-cone
dominated observables [52–57].

In 2005, using EFT, Chen and Detmold [50] found
that, up to higher order corrections, the F2 structure
function of an isoscalar nucleus has the form

FA
2 (x, Q2)/A ' FN

2 (x, Q2) + g2(A, ⇤)f2(x, Q2, ⇤) , (6)

where FN
2 is the isoscalar combination of the nucleon

structure function, which receives the nuclear modifica-
tion from the second term in which the x and A de-
pendence factorizes. The A dependence comes from mo-
menta smaller than the ultraviolet momentum cutoff of
the EFT ⇤ ⇠ 0.5 GeV, while the x dependence comes
from scales larger than ⇤.

An immediate consequence of Eq. (6) is that

REMC(A, x) � 1 ' C(x) [a2(A) � 1] , (7)

with the x and A dependence factorized, and

C(x) = 1 � 2FN
2 (x)

F d
2 (x)

, (8)

a2(A) =
g2(A, ⇤)

g2(2, ⇤)
. (9)

The deviation of REMC from unity in Eq. (7) means that
the nuclear modification to the structure functions has
a universal shape (x dependence), while its maximum
magnitude depends only on A [50]. This feature describes

experimental data with x < 1 for many nuclei, ranging
from He to Pb very well [58, 59].

Because FA
2 (x) has support for 0 < x < A, if DIS

experiments were carried out at 1 < x < 2, where
FN
2 (x) = 0 but F d

2 (x) 6= 0, then Eqs. (7) and (8) yields

REMC(A, 1 < x < 2) ' a2(A) , (10)

which is an x-independent plateau. Experimentally, the
measurements at x > 1 are performed not in the DIS
region, but in the QE region at lower Q2 because of the
larger associated rate. Generalizing the analysis to the
QE region by including all the higher twist effects does
not change the plateau value of Eq. (10) [19]. The plateau
is observed experimentally at 1.5 < x < 2, possibly be-
cause Fermi motion, which is a higher-order effect in the
EFT, extends the contribution of the single-nucleon PDF
to x slightly above 1, so that the onset of the plateau is
also pushed to larger x.

From Eqs. (7) and (10), the observed linear relation be-
tween �dREMC/dx and the SRC scaling factor a2(A) is
easily obtained. Equation (10) demands that the scaling
factor, which comes from the ratio of two cross sections,
be independent of the cutoff ⇤. Therefore, the ⇤ de-
pendence on the right-hand side of Eq. (9) should cancel.
This provides a nontrivial test of EFT, because it implies
that, although g2(A, ⇤) depends on the renormalization
scheme and scale (⇤) of the EFT, a2 is scheme and scale
independent. This occurs if the ⇤ and A dependence
factorize in g2, which is defined as

g2(A, ⇤) ⌘ 1

2A
hA|: (N†N)2 :|Ai⇤ , (11)

where N is the nucleon field and : · · · : indicates normal
ordering of the enclosed operators with respect to the
vacuum state.

EMC

4

The above analysis is for isoscalar operators. Including
isovector corrections, one has

FA
2 (x, Q2) ' ZF p

2 (x, Q2) + NFn
2 (x, Q2)

+ Ag2(A, ⇤)f2(x, Q2, ⇤) + · · · ,
(12)

with N (Z) the number of neutrons (protons) in the nu-
cleus. The isovector counterpart of the g2 term is ne-
glected because it is O((N � Z)/ANc) smaller than g2,
with the number of colors Nc = 3. This implies that, even
with isovector corrections, the SRC plateaus still exist,
and the plateau values of a2 remain unchanged. Also,
for the EMC effect, recent experimental results including
nonisoscalar nuclei are well described by Eq. (12) [60].
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Figure 3. The linear relationship between the strength (slope)
of the EMC effect �dR

EMC

/dx and the SRC scaling factor
a2. The fit is constrained to pass through the deuteron point
with �dR

EMC

/dx = 0, and a2 = 1: Hence the form of the
fit �dR

EMC

/dx = m(a2 � 1). Data (in black) are taken from
Ref. [32]. In red, are our predictions from this work for 6He,
6Li, and 16O using local chiral EFT interactions at N2LO
with the E⌧ parametrization of the 3N interaction, and for
40Ca using the simplified AV40 +UIX

c

potential (see Table II
and Section III). The QMC statistical uncertainties are shown
as the red error bars (the horizontal statistical uncertainties
are smaller than the points). The systematic errors coming
from the truncation of the chiral expansion (where available)
and from the fit of a2 are shown as the red shaded areas. For
16O (the empty red circle), we do not show the associated sys-
tematic uncertainties as they are large enough (see Table II)
as to obscure the figure.

C. EFT power counting

In DIS, the structure functions FA
2 (x, Q2) can be

expressed in terms of nuclear PDFs qAi (x, Q) as
FA
2 (x, Q2) =

P

i Q
2
ixqAi (x, Q), where the sum runs over

quarks and antiquarks of flavor i with charge ±Qi in a
nucleus A. In what follows, we first focus on the power
counting for isoscalar PDFs, qA = qA,0 = qA,u + qA,d,
then we discuss the isovector correction from qA,3 =
qA,u � qA,d. The dominant (leading-twist) PDFs are de-
termined by target matrix elements of bilocal light-cone
operators. Applying the operator product expansion, the
Mellin moments of the PDFs,

hxniA (Q) =

Z A

�A

dx xnqA(x, Q) , (13)

are determined by matrix elements of local operators,

hA; p|Oµ0···µn |A; pi = 2 hxniA (Q) p(µ0 · · · pµn) , (14)

with

Oµ0···µn = q�(µ0 iDµ1 · · · iDµn)q , (15)

where (· · · ) indicates that the enclosed indices have been
symmetrized and made traceless, Dµ ⌘ ( ~Dµ � ~Dµ)/2 is
the covariant derivative, and a sum over flavors q = u, d
is implied. The negative x distribution is the antiquark
distribution: qA(�x) = �q̄A(x).

In nuclear matrix elements of these operators, there are
other relevant momentum scales below the hard scatter-
ing scale Q: ⇤ ⇠ 0.5 GeV is the range of validity of
the EFT, and P ⇠ m⇡ is a typical momentum inside
the nucleus (m⇡ is the pion mass). These scales satisfy
Q � ⇤ � P , and the ratio ⇤/Q is the small expan-
sion parameter in the twist expansion, while the ratio
✏ ⇠ P/⇤ ⇠ 0.2–0.3 is the small expansion parameter for
the chiral expansion.

In EFT, each of the QCD operators is matched to a
sum of all possible hadronic operators of the same sym-
metries at the scale ⇤ [50]

Oµ0···µn ! : 2 hxniN Mn+1
N v(µ0 · · · vµn)N†N

⇥

1 + ↵nN†N
⇤

+ hxni⇡ ⇡↵i@(µ0 · · · i@µn)⇡↵ + · · · : ,
(16)

where ⇡ (N) is the pion (nucleon) field, v is the nu-
cleon four-velocity, and hxniN (⇡) is the nth moment of
the isoscalar quark PDF in a free nucleon (pion). There
are an infinite number of terms on the right-hand side
of Eq. (16), whose importance will be estimated by power
counting. The hxniN (⇡) terms are one-body operators
acting on a single hadron, whose prefactors can be de-
termined by taking the nucleon (pion) matrix element
of Eq. (16). The ↵n terms are two-body operators.
Here we have only kept the SU(4) (spin and isospin)
singlet two-body operator / �

N†N
�2 and neglected the

EMC slope vs A
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state of the system is reached (more details can be found
in Refs. [14, 17]).

The local chiral interactions considered in this work
can be efficiently implemented in both the GFMC and
AFDMC methods. The GFMC method, which includes
a sum over all possible spin/isospin states at each step
in the diffusion, scales exponentially with the number of
nucleons A. This limits current calculations to around
A = 12. The AFDMC method, on the other hand, sam-

ples the sum over all spin/isospin states, and therefore
exhibits a much gentler, polynomial scaling with A. The
two algorithms are thus complementary, and they al-
low one to vastly extend the region of applicability of
QMC calculations. Results employing local chiral forces
are now available for several quantities (binding ener-
gies, charge radii, charge form factors, single- and two-
nucleon radial distributions, and single- and two-nucleon
momentum distributions) in light and medium-mass nu-
clei [16, 17, 69, 72, 73], and for properties of pure neutron
systems [74–76], including pure neutron matter [66–69].

In QMC methods, the expectation value of an observ-
able O is calculated as

hOi =
1

N
N
X

i=1

hRiSi|O| T i
hRiSi| T i , (29)

where {Ri, Si} are spatial and spin/isospin configurations
typically sampled using the Metropolis algorithm [77],
and N is the (large) number of configurations in the
simulation. In the AFDMC method, both spatial and
spin/isospin degrees of freedom are sampled during the
imaginary-time propagation, the latter through the so-
called Hubbard-Stratonovich transformation. In the
GFMC approach, all possible spin/isospin configuration
are included in the trial many-body wave function, and
only configurations in coordinate space are sampled. The
above expression is valid only for observables that com-
mute with the Hamiltonian. For other observables, such
as radii and densities, expectation values are extracted
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Figure 4. Scaled two-nucleon distributions at N2LO for 2H,
6He, and 16O for the 3N parameterization E1 (left panel).
The darker (lighter) colors correspond to R0 = 1.0 (1.2) fm.
The right panel shows the scaled two-nucleon distributions for
the AV40 + UIX
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potential for 2H, 4He, 16O, and 40Ca.

from so-called mixed estimates

hOi ⇡ 2
h T |O| (⌧)i
h T | (⌧)i � h T |O| T i

h T | T i . (30)

In the above expression, the first term is the mixed esti-
mate (propagated wave function on one side, trial wave
function on the other side), and the second term is the
variational estimate. This relationship can be derived un-
der the assumption that the variational trial wave func-
tion is a good starting point, i.e., that | (⌧ ! 1)i =
| T i + |� T i, with |� T i small. Then, if we calculate
the expectation value of an operator between two prop-
agated wave functions and discard terms of O(� 2

T ), we
arrive at Eq. (30). Additional details, including the sam-
pling procedure and the calculation of statistical errors,
can be found, e.g., in Ref. [78].

The SRC scaling factors can be expressed in terms
of the central two-nucleon distribution (two-body point-
nucleon density) [19]:

a2(A/d) = lim
r!0

2

A

⇢2,1(A, r)

⇢2,1(d, r)
, (31a)

a2(A/3He) = lim
r!0

3

A

⇢2,1(A, r)

⇢2,1(3He, r)
, (31b)

where the central two-nucleon distribution is defined as

⇢2,1(A, r) =
1

4⇡r2
⌦

 
�

�

A
X

i<j

�(r � rij)
�

� 
↵

. (32)

The normalization is such that ⇢2,1(A, r) integrates to
the number of nucleon pairs. Equation (32) involves a
mixed estimate and is evaluated according to Eq. (30).
In this work, we ensure that the difference between the
mixed and variational estimates of the distributions is
. 10%.

In addition to Monte Carlo statistical errors, the use of
chiral interactions allows one to estimate the theoretical
uncertainties coming from the truncation of the chiral
expansion. In this work, we consider results for ⇢2,1(A, r)
at leading-order (LO), next-to-leading-order (NLO), and
N2LO, and we estimate the truncation errors on the ratio
X = 2⇢2,1(A,r)

A⇢2,1(2,r)
entering the definition of the SRC scaling

factor of Eqs. (31a) and (31b) following Ref. [80]:

�XN2LO = max(Q4|XLO|,
Q2|XNLO � XLO|,
Q |XN2LO � XNLO|) , (33)

where we take Q = m⇡/⇤b with m⇡ ⇡ 140 MeV and
⇤b = 600 MeV, as in Ref. [17].

Auxiliary field diffusion Monte Carlo calculations for
nuclei employing local chiral interactions have been car-
ried out up to A = 16 [17, 72, 73]. Preliminary results
for heavier systems suggest that improved wave functions
are necessary to obtain ground-state properties with the

8

Figure 5. Three examples of the extraction of the SRC scaling factor a2(A/d) from Monte Carlo results. The left two panels
show results for the local chiral interactions at N2LO with the E⌧ parameterization of the 3N force for 6He and 12C. The right
panel shows results for the AV40 + UIX

c

potential for 40Ca. For the chiral interactions, we indicate the combined statistical
and chiral truncation uncertainty estimates as the blue and red bands. For the phenomenological potentials (right panel) we
indicate the uncertainty in the fit by the light blue band. In each case, as described in more detail in the text, we fit a horizontal
line to the AFDMC results weighted by the Monte Carlo statistical uncertainties in the region 0  r  0.7 fm. The values
extracted for a2 using this procedure are shown in each panel including uncertainties. For 12C the experimental value [32] with
uncertainties is shown as the black dashed line with the gray band.
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Figure 6. Short-range-correlation scaling factors a2 for selected nuclei from A = 3 up to A = 40 calculated with respect to the
deuteron (left panel) and 3He (right panel). Results for the chiral interactions at N2LO (with the E⌧ parameterization of the 3N
force) for cutoff R0 = 1.0 (1.2) fm are shown as the blue squares (red circles). We also show results for the AV18+UIX potentials
(green upward-pointing triangles) as well as the simplified AV40 + UIX

c

potentials (green downward-pointing triangles). The
black stars in the left (right) panel are the experimental values from Ref. [32] (Ref. [79]). The gray bands represent the expected
range of values at which a2 saturates, based on measurements for 63Cu and 197Au [32] (also reported in Table II) in the left
panel and based on measurements for 56Fe [79] (also reported in Table III) in the right panel. The dark error bars (typically
smaller than the symbols) represent the Monte Carlo statistical uncertainties. The lighter bands show the overall systematic
uncertainties, both associated with the truncation of the chiral expansion at N2LO as computed using Eq. (33) for local chiral
interactions, and coming from the fit of a2 for the phenomenological potentials (see the text for more details).

same accuracy as for lighter systems. However, such
a prescription will increase the computational cost by
a factor proportional to A2 (see Ref. [17] for details),
making calculations for A & 20 no longer feasible. One
way to move beyond oxygen is to use a simplified in-

teraction, capable of capturing most of the ground-state
physics of nuclei, for which the employed wave function
still gives an accurate description of larger nuclei, thus
maintaining the good computational scaling of the cur-
rent implementation of the AFDMC algorithm. We con-

Ratios vs. a2

Lynn, et al, 1903.12587



Electron Scattering:
Longitudinal and Transverse Response

RT (q,!) =
X

f

h0| j†(q) |fihf | j(q) |0i �(w � (Ef � E0))

Transverse (current) response:

RL(q,!) =
X

f

h0| ⇢†(q) |fihf | ⇢(q) |0i �(w � (Ef � E0))

Longitudinal (charge) response:

Requires models of nuclear interactions and currents



Connections to Lattice QCD: one- and two-N matrix elements

 Elastic Nucleon form factors (particularly axial)
 Inelastic form factors: 
        Inclusive (sum over all all hadronic final states):  
                       constrains hadronic input  
        Exclusive (e.g.  specific pi-N final state)
Two-Nucleon matrix elements w/ current insertions  
                     (particularly for NN final state)

Solutions or advances on dealing with sign problem
            imaginary to real time response and dynamics

….



Nearly Static Poperty: Sum Rules (Longitudinal Response)

S (q) = h 0 | j†(q) j(q) 0 i Gives an indication of total strength,
but not energy dependence
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pp correlations

Two-body dynamics broadens peak for modest q
S. Pastore, et al., 2019



2 Nucleon Currents also important:  Vector Current Sum Rule

p

p+q

p

final state

PWIA

Sum Rule: Constructive Interference 
between 1- and 2-body currents

w/ tensor correlations
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Large enhancement from
initial state correlations

and two-nucleon currents
similar in axial response

Note enhancement from
final states have larger momenta / �i · k �i · q (�j · k)2 (⌧i · ⌧j)2 v2⇡(k)

S. Pastore, et al., 2019
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to collective excitations of electric-dipole type in the nu-
cleus. In the large q limit, the one-body sum rules di↵er
from unity because of relativistic corrections in OL(q),
primarily the Darwin-Foldy term which gives a contri-
bution �⌘/(1 + ⌘) to S1b

L (q), where ⌘ ' q2/(4m2), and
because of the convection term in OT (q), which gives a
contribution ' (4/3)CT Tp/m to S1b

T (q), where Tp is the
proton kinetic energy in the nucleus.

In contrast to SL, the transverse sum rule has large
two-body contributions. This is consistent with studies
of Euclidean transverse response functions in the few-
nucleon systems (Carlson et al., 2002), which suggest that
a significant portion of this excess transverse strength
is in the quasi-elastic region. Overall, the calculated
SL(q) and ST (q) are in reasonable agreement with data.
However, a direct calculation of the response functions
is clearly needed for a more meaningful comparison be-
tween theory and experiment. Such calculations will be
forthcoming in the near future.

While sum rules of NC or CC weak sum rules are of a
more theoretical interest, they nevertheless provide useful
insights into the nature of the strength seen in the quasi-
elastic region of the response and, in particular, into the
role of two-body terms in the electroweak current. Those
corresponding to weak NC response functions and rela-
tive to 12C are shown in Fig. 24: results S1b (S2b) cor-
responding to one-body (one- and two-body) terms in
the NC are indicated by the dashed (solid) lines. Note
that both S1b

↵� and S2b
↵� are normalized by the same fac-

tor C↵� , which makes S1b
↵�(q) ! 1 in the large q limit.

In the small q limit, S1b
00 (q) and S1b

0z (q) are much larger
than S1b

↵� for ↵� 6= 00, 0z. In a simple ↵-cluster pic-

ture of 12C, one would expect S1b
↵�(

12C)/C↵�(12C) '
3S1b

↵�(
4He)/C↵�(4He), as is indeed verified in the ac-

tual numerical calculations to within a few %, except for
S1b
00 /C00 and S1b

0z /C0z at low q . 1 fm �1, where these
quantities are dominated by the elastic contribution scal-
ing as A2.

Except for S2b
00 (q), the S2b

↵�(q) sum rules are consid-

erably larger than the S1b
↵�(q), by as much as 30-40%.

This enhancement is not seen in calculations of neutrino-
deuteron scattering (Shen et al., 2012); the deuteron
R↵�(q,!) response functions at q = 300 MeV/c are dis-
played in Fig. 25 (note that R00 is multiplied by a factor
of 5). Two-body current contributions in the deuteron
amount to only a few percent at the top of the quasielas-
tic peak of the largest in magnitude Rxx and Rxy, but
become increasingly more important in the tail of these
response functions, consistent with the notion that this
region is dominated by NN physics (Lovato et al., 2013).
The very weak binding of the deuteron dramatically
reduces the impact of NN currents, which are impor-
tant only when two nucleons are within 1–2 inverse pion
masses.

Correlations in np pairs in nuclei with mass number
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FIG. 24 (Color online) The sum rules S
↵�

in 12C, correspond-
ing to the AV18/IL7 Hamiltonian and obtained with one-body
only (dashed lines) and one- and two-body (solid lines) terms
in the NC.

50 100 150
ω (MeV)

-0.02

0.00

0.02

0.04

M
eV

-1

1b
1b+2b

100 150 200

-0.001

0.000

0.001

0.002

xx00 x 5

0z

xy

zz

FIG. 25 (Color online) The response functions R
↵�

in the
deuteron at q = 300 MeV/c computed using AV18 and ob-
tained with one-body only (dashed lines) and one- and two-
body (solid lines) terms in the NC. The inset shows the tails
of R

↵�

in the !-region well beyond the quasi-elastic peak.

A�3 are stronger than in the deuteron. The NN density
distributions in deuteron-like (T=0 and S=1) pairs are
proportional to those in the deuteron for separations up
to ' 2 fm, and this proportionality constant, denoted as
RAd (Forest et al., 1996), is larger than A/2; in 4He and
16O the calculated values of RAd are 4.7 and 18.8, respec-
tively. Similarly, experiments at BNL (Piasetzky et al.,
2006) and JLab (Subedi et al., 2008) find that exclusive
measurements of back-to-back pairs in 12C at relative mo-
menta around 2 fm�1 are strongly dominated by np (ver-
sus nn or pp) pairs. In this range and in the back-to-back

Sum rules in 12C: neutral current scattering

Lovato, et. al PRL 2014

EM

Single Nucleon currents (open symbols) versus
Full currents (filled symbols)

Longitudinal

Transverse



Full treatment of (inclusive) dynanics: Euclidean Response

˜R(q, ⌧) = h0| j† exp[�(H�E0 � q2/(2m))⌧ ] j |0i >
• Exact given a model of interactions, currents
• `Thermal’ statistical average
•  Full final-state interactions
•  All contributions included - elastic, low-lying states, quasi elastic, …

duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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Sum rule → elastic FF2 w/ increasing 

Excellent agreement 
w/ EM  (L & T) 

response in A=4,12
Lovato, 2015, PRL 2016

R(q,!) =

Z
dt h0| j† exp[i(H � !)t] j |0i
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• Good agreement with data without in-medium modifications of the nucleon form factors

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

• We inverted the electromagnetic Euclidean response of 12C
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• Small contribution from two-body currents.

12C, q=570 MeV

Electron Scattering from 12C:  Longitudinal Response



• We inverted the electromagnetic Euclidean response of 12C

• Good agreement with the experimental data once two-body currents are accounted for
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sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.
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rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!+
el

d! e�!⌧ R↵(q,!)

[Gp
E(q,!)]

2

, (2)

where Gp
E(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!

el

is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵(q)e

�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,
(3)

where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E(q,!) [15]. The
calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E

0

) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?
f � E

0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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• Need to include relativistic corrections in the kinematics

12C, q=570 MeV

Electron Scattering from 12C:  Transverse Response



Why Y-scaling?
Even though two-nucleon currents are important, 

main contribution comes from interference w/
one-body currents
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S. Pastore, et al., 2019

Overall strength enhanced, but through interference
w/ same final states: similar shape



Why superscaling ?
For nuclei w/ N~Z, bulk density is very similar :

nuclear saturation at ~0.16 fm-3

also pair densities very similar for A>12 nuclei 

Inclusive Scattering at Quasi-Elastic energies and 
momenta is a nearly local operator

exp[�(r � r0)2/(4
~2
2m

�⌧ ]
<latexit sha1_base64="jGzt/0P3PIkzZprw8m6XwFJYucE="></latexit>

Free particle propagator:

at δτ = 1/100 MeV; r-r’ ~ 1.1 fm
at δτ = 1/ 50 MeV; r-r’  ~ 1.6 fm



• We recently computed the charged-current response function of 12C 

• Calculations from q= 200 - 700 MeV/c

12C charged-current responses 

12C, q=700 MeV

Alessandro Lovato,  2019



• We recently computed the charged-current response function of 12C 
• Two-body currents have a sizable effect in the transverse response, both in the 
vector and in the axial contributions

• Calculations from q = 200 - 700 MeV/c

12C, q=700 MeV

12C charged-current responses 

Alessandro Lovato,  2019



Towards Exclusive Scattering and Larger Nuclei

Ground-state nuclei:  doable with some approximations
Propagation:   12C GFMC calculations to τ ~ 0.1 MeV-1      
                    Each particle propagates  ~ 3 fm

Sign problem much worse in Ar than Carbon
                     Any fermion interchange in the system
                     contributes to the noise

How much information can we get from very short real times?



Short Time Approximation: Towards real-time dynamics
Saori Pastore, et al, 2019

I. INTRODUCTION

The scattering of electrons and neutrinos by nuclei is governed by the relevant electroweak

response functions. These are given in detail in Refs. [1, 2], generically they are given by:

RO(q,!) =

R
d⌦q

4⇡

X

f

h 0|O†(q)| fih f |O(q)| 0i�(Ef � E0 � !), (1)

for all relevant electroweak current operators O. This can be equivalently written as a

current-current matrix element with the insertion of a real-time propagator in place of the

sum over final states:

RO(q,!) =

R
d⌦q

4⇡

Z
dt

2⇡
exp[i!t]h 0|O†(q, t0) exp[�iHt]O(q, t = 0) 0i, (2)

The nuclear Hamiltonian is a sum of one-particle kinetic terms plus two- and three-nucleon

interactions: H =
P

i � ~2
2mr2

i +
P

i<j Vij +
P

i<j<k Vijk. Similarly the current operators O
are written as a sum of one-, two- and in principle many-nucleon operators: O =

P
i Oi +

P
i<j Oij + ...

Calculations of nuclear response based upon realistic interactions and currents using

the imaginary-time formalism have been used to calculate electron[? ] and neutrino[?

] scattering. In this approach, one calculates the imaginary-time response RO(q, ⌧) =
R
exp[�!⌧ ]RO(q,!) through the imaginary-time correlation function, making the replace-

ment (t ! �i⌧) in Eq. 2. Quantum Monte Carlo methods can then be used to calculate

the relevant matrix elements. Since the nuclear response in the quasi-elastic region is fairly

smooth in the energy !, maximum entrop techniques are successful in obtaining the real-time

response from the imaginary time response.

This method has the advantage that final-state interactions and two-nucleon currents are

included completely, that these interactions and currents are tied to the same interaction

used to calculate the ground state | 0i, and that the current operators are the same as

those used to study other observables like nuclear form factors [, REF] low-energy transitions

including beta decay [, REF] and double beta decay [? , REF] The disadvantages of this

approach are that it is computationally intensive since it involves the propagation of the full

A-nucleon system, and that it provides direct information on only inclusive response, the

sum over all final states.

Other approaches including PWIA and spectral function approaches involve o↵-diagonal

density matrix elements of one (and sometimes two-) nucleons. However the propagation of
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the final state is treated in a rather simplified way and in general these approaches often

do not include full two-nucleon interactions and currents and do not yield the correct sum

rules of the response.

II. REAL-TIME RESPONSE AT SHORT TIMES

In this paper we evaluate the real-time matrix element in Eq. 2 for short times including

the full ground state wave function, current operator and final-state interactions. The short-

time approximation should be valid at high energies such as the quasielastic regime. It

naturally incorporates two nucleon interactions, currents, and their interference that have

been demonstrated to be important in [? ]. Since it is based on the full A-nucleon ground

state, it also includes the Pauli principle and reproduces the correct nuclear sum rules.

Calculating the full response requires the matrix element of the real-time propagator

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i between A-particle spatial, spin, and isospin states denoted by

R

0, �0, ⌧ 0 and R, �, ⌧ . The propagator can be expanded in a manner similar to the Trotter

decomposition typically used in Quantum Monte Carlo (QMC) simulations:

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i ⇡ hR0, �0, ⌧ 0|
Y

i

exp[�iH0
i t]

SQ
i<j exp[�iHijt]Q

i<j exp[�iH0
ijt]

|R, �, ⌧i (3)

where H0
i is the single-particle kinetic energy and Hij and Hij are the interacting and free

two-particle Hamiltonians. The interacting Hamiltonian includes the two-nucleon interac-

tion, we have dropped the three-nucleon interaction in the final state interaction but its

should be of order 10 per cent of the two-nuceon interaction

Inserting this expression into Eq. 2, keeping only the single-particle propagators and

currents, and factoring out the spectator nucleons reproduces the plane-wave impulse ap-

proximation (PWIA) calculation at high-momentum transfer. At low momentum transfer

Eq. 2 includes Pauli blocking as it is evaluated in the full A-nucleon ground state. Since the

full currents and ground-state are included in Eq. 2 the sum rules are also exactly recovered

at t = 0 in the short-time approximation.

We can go further and include the two-nucleon contributions to the response. Includ-

ing two-nucleon current operators, ground-state correlations, and two-nucleon terms in the

propagator allows us to go beyond the PWIA or spectral function approach. Calculations of

the imaginary-time response have demonstrated that both two-nucleon correlations and cur-
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At short time evolution can be described as a product of  NN propagators

Evaluate as a sum of matrix elements of NN states embedded in the nucleus

X

q,Q,J,L,S,T

h 0| ji† | NN (q,Q)i h NN (q,Q)| ji | 0i �(Ef � Ei � !)
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Incoherent sum of single nucleon currents

X

q,Q,J,L,S,T

h 0| jij† | NN (q,Q)i h NN (q,Q)| ji | 0i �(Ef � Ei � !)
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Interference of 1- and 2-nucleon currents

X

q,Q,J,L,S,T

h 0| jij† | NN (q,Q)i h NN (q,Q)| jij | 0i �(Ef � Ei � !)
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Short Time Approximation: Towards real-time dynamics
Saori Pastore, et al, 2019

I. INTRODUCTION

The scattering of electrons and neutrinos by nuclei is governed by the relevant electroweak

response functions. These are given in detail in Refs. [1, 2], generically they are given by:

RO(q,!) =

R
d⌦q

4⇡

X

f

h 0|O†(q)| fih f |O(q)| 0i�(Ef � E0 � !), (1)

for all relevant electroweak current operators O. This can be equivalently written as a

current-current matrix element with the insertion of a real-time propagator in place of the

sum over final states:

RO(q,!) =

R
d⌦q

4⇡

Z
dt

2⇡
exp[i!t]h 0|O†(q, t0) exp[�iHt]O(q, t = 0) 0i, (2)

The nuclear Hamiltonian is a sum of one-particle kinetic terms plus two- and three-nucleon

interactions: H =
P

i � ~2
2mr2

i +
P

i<j Vij +
P

i<j<k Vijk. Similarly the current operators O
are written as a sum of one-, two- and in principle many-nucleon operators: O =

P
i Oi +

P
i<j Oij + ...

Calculations of nuclear response based upon realistic interactions and currents using

the imaginary-time formalism have been used to calculate electron[? ] and neutrino[?

] scattering. In this approach, one calculates the imaginary-time response RO(q, ⌧) =
R
exp[�!⌧ ]RO(q,!) through the imaginary-time correlation function, making the replace-

ment (t ! �i⌧) in Eq. 2. Quantum Monte Carlo methods can then be used to calculate

the relevant matrix elements. Since the nuclear response in the quasi-elastic region is fairly

smooth in the energy !, maximum entrop techniques are successful in obtaining the real-time

response from the imaginary time response.

This method has the advantage that final-state interactions and two-nucleon currents are

included completely, that these interactions and currents are tied to the same interaction

used to calculate the ground state | 0i, and that the current operators are the same as

those used to study other observables like nuclear form factors [, REF] low-energy transitions

including beta decay [, REF] and double beta decay [? , REF] The disadvantages of this

approach are that it is computationally intensive since it involves the propagation of the full

A-nucleon system, and that it provides direct information on only inclusive response, the

sum over all final states.

Other approaches including PWIA and spectral function approaches involve o↵-diagonal

density matrix elements of one (and sometimes two-) nucleons. However the propagation of

2

the final state is treated in a rather simplified way and in general these approaches often

do not include full two-nucleon interactions and currents and do not yield the correct sum

rules of the response.

II. REAL-TIME RESPONSE AT SHORT TIMES

In this paper we evaluate the real-time matrix element in Eq. 2 for short times including

the full ground state wave function, current operator and final-state interactions. The short-

time approximation should be valid at high energies such as the quasielastic regime. It

naturally incorporates two nucleon interactions, currents, and their interference that have

been demonstrated to be important in [? ]. Since it is based on the full A-nucleon ground

state, it also includes the Pauli principle and reproduces the correct nuclear sum rules.

Calculating the full response requires the matrix element of the real-time propagator

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i between A-particle spatial, spin, and isospin states denoted by

R

0, �0, ⌧ 0 and R, �, ⌧ . The propagator can be expanded in a manner similar to the Trotter

decomposition typically used in Quantum Monte Carlo (QMC) simulations:

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i ⇡ hR0, �0, ⌧ 0|
Y

i

exp[�iH0
i t]

SQ
i<j exp[�iHijt]Q

i<j exp[�iH0
ijt]

|R, �, ⌧i (3)

where H0
i is the single-particle kinetic energy and Hij and Hij are the interacting and free

two-particle Hamiltonians. The interacting Hamiltonian includes the two-nucleon interac-

tion, we have dropped the three-nucleon interaction in the final state interaction but its

should be of order 10 per cent of the two-nuceon interaction

Inserting this expression into Eq. 2, keeping only the single-particle propagators and

currents, and factoring out the spectator nucleons reproduces the plane-wave impulse ap-

proximation (PWIA) calculation at high-momentum transfer. At low momentum transfer

Eq. 2 includes Pauli blocking as it is evaluated in the full A-nucleon ground state. Since the

full currents and ground-state are included in Eq. 2 the sum rules are also exactly recovered

at t = 0 in the short-time approximation.

We can go further and include the two-nucleon contributions to the response. Includ-

ing two-nucleon current operators, ground-state correlations, and two-nucleon terms in the

propagator allows us to go beyond the PWIA or spectral function approach. Calculations of

the imaginary-time response have demonstrated that both two-nucleon correlations and cur-

3

At short time evolution can be described as a product of  NN propagators

Evaluate as a sum of matrix elements of NN states embedded in the nucleus

A set of two-nucleon off-diagonal density matrix elements:

• Calculate for each operator and each q
• Incorporates: Exact sum rule nearly exact energy-weighted sum rule
• Incorporates full Pauli principal (A-nucleon ME)
• Information on the 2-nucleon quantum state right after the vertex   

    - couple with semi-classical event generators



component and the spectator nucleus, one can more easily incorporate relativistic kinemat-

ics and currents, pion production, and resonance production. Treating such e↵ects at the

two-nucleon level is vastly easier than calculating the same processes in a full A-nucleon

treatment. We expect that interference processes, for example di↵ernt processes leading to

pion production, may be important here as well.
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add comment on momentum distribution vs STA, and comment on 1st king scaling
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• Calculate individual response densities as a function of CM and 
relative energies of the struck pair
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Fraction of Transverse response that include a 2N current
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FIG. 6. Comparison of transverse responses without (dashed lines) and with (full lines) interacting

two-nucleon final states. Various contributions are shown, including 1-body current diagonal terms,

1-body current o↵-diagonal (i 6= j) terms, interference between 1- and 2-body currents, and 2-body

currents only. See text for explanation. Results at q = 300 MeV/c (left panel) and q = 500 MeV/c

(right panel).

FIG. 7. Transverse response density at q = 500 MeV/c. The 3D plot shows the response density

as a function of relative E and center-of-mass E
cm

energies. The contour plot below shows the

fraction of the response coming from terms including two-nucleon currents.

We can further examine the relative contributions of one- and two-nucleon currents at

the vertex for di↵erent combination of e and E
cm

. In Fig. 7 we again show the transverse

22

Large impact of 2-body currents at
high relative energy

np vs. pp, etc.

Response Densities

Figures 8 and 9 show the response densities at fixed energy E
cm

⇠ P 2/(4m) = q2/(4m),

which is the final state center-of-mass energy for an initial pair with total momentum zero,

as function of the relative energy of the pair. The regime of large back-to-back momentum

is above e=250 MeV which corresponds to the final pair relative momentum of ⇠ 2.5 fm�1

and above.
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FIG. 8. Contributions to response densities at q = 500 MeV/c and final center of mass energy

E
cm

= q2/(4m). Contributions of one-body diagonal terms are shown (cyan solid line), along

with the total one-body currents given by diagonal plus o↵-diagonal contributions (magenta solid

line). Full (one- plus two-body currents) results are also shown for both total (solid black line) and

contributions from nn (blue dashed line) and pp pairs (red dashed line). Left panel: Longitudinal.

Right panel: Transverse.
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On the left panels the longitudinal responses are shown, including the full response,
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np vs pp in back-to-back kinematics



Comparison to Data (A=4)

0 50 100 150 200
ω [MeV]

0

0.005

0.01

0.015

R
T
(ω

,q
) 

[M
eV

-1
]

0 50 100 150 200 250
ω [MeV]

0

0.005

0.01

0.015

world data

0 50 100 150 200 250 300
ω [MeV]

0

0.005

0.01

0.015

R
T
(ω

,q
) 

[M
eV

-1
]

0 50 100 150 200 250 300 350
ω [MeV]

0

0.005

0.01

0.015

q=300 MeV/c q=400 MeV/c

q=500 MeV/c q=600 MeV/c

FIG. 11. Transverse responses at q = 300–600 MeV/c compared with the world data [10]

the specific electroweak two-nucleon current operators and Pauli blocking between the struck

and spectator nucleons. The cost is that it must be evaluated explicitly in the ground state

for each momentum transfer q and each transition current operator.

Additionally, the STA provides information about pairs of nucleons at the interaction

vertex. This can be very valuable when trying to understand more exclusive processes like

back-to-back nucleons that can be measured experimentally. It is also important in neutrino

physics where final state information is used to help gain information on the initial neutrino

energy, an important ingredient in neutrino oscillation analyses. For large nuclei this infor-

mation about the vertex will have to be augmented by semi-classical event generators.

The STA is amenable to many improvements associated with calculating responses at

higher energy. Since it factorizes the response into two-nucleon component and the spec-

tator nucleus, one can more easily incorporate relativistic kinematics and currents, pion

production, and resonance production. Treating such e↵ects at the two-nucleon level is

vastly easier than calculating the same processes in a full A-nucleon treatment. We expect

27
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FIG. 1. Approximations of the true response function SO(ω) for
the model system described by the Hamiltonian of Eq. (5) for
different numbers of the work qubits: W = 6 (blue line), W = 8 (red
line), and W = 12 (green line). The exact response is also shown
with black dots. The inset shows the maximum error in the sample
estimate of P(y) as a function of the number of samples.

which implies in order to obtain a precision δ with probability
1 − ϵ we need approximately

N = ln
(

2
ϵ

)
1

2δ2
(16)

independent samples.
In Fig. 1 we plot the approximate response P(y) for the

model Hamiltonian Eq. (5) at three different values of W
(6,8,12). By comparing with the exact result shown as black
dots, we see that for W = 12 the effect of energy resolution
is negligible but already with W = 8 we obtain a rather ac-
curate estimate for SO(ω). Even W = 6 reproduces important
features of the response, which in experiments is convoluted
with the detector resolution. The inset shows the convergence
of the maximum error

δmax = sup
y∈[0,...,2W −1]

|hN (y) − P(y)| (17)

as a function of the sample size N . As expected the error do
not scale with the resolution $ω. Response functions relevant
for ν and e− scattering are typically smooth at high energy
and hence require small W and short propagation times.

Finally, in order to obtain a negligible bias from the state
preparation we need the parameter γ to scale as

γ ! C

√
δ

∥Ô∥
(18)

for some constant C = O(1). Note that the Hamiltonian evo-
lution implemented in Ût has to have an error ϵt ! γ 2∥Ô∥2

to be negligible (luckily algorithms with only logarithmic
dependence on ϵt are known [36,43]). This concludes the
proof of the scalings (3) and (4).

III. FINAL STATE MEASUREMENTS

In electron- or neutrino-nuclear scattering experiments
[10,49–62] one would like to infer the probability P(q,ω| p⃗)
that the probe transferred energy momentum (q,ω) to the nu-
cleus and simultaneously that the final state includes a nucleon
(or neutron or proton) of momentum ( p⃗). More concretely this
amounts to an inference procedure of the form

P(q,ω| p⃗) = P( p⃗|q,ω)
P(q,ω)

P( p⃗)

= P( p⃗|q,ω)
P(ω|q)P(q)

P( p⃗)
,

(19)

where P( p⃗) results from the experimental measure, P( p⃗|q,ω)
is the momentum distribution of the final states for a process
with given (q,ω) and P(q|ω) ≡ S(q,ω). The prior probability
P(q) depends on the static response of the nucleus and the
characteristic of the probe beam and can be updated given the
other ones by a Bayesian procedure. The above section ex-
plains how to obtain S(q,ω) with a given accuracy and in the
following we will show how to evaluate few-body momentum
distributions given by the final state of the algorithm above.
Note that after measuring the W ancilla qubits of Sec. II B the
main register will be left in a state |' f ⟩ composed by a linear
superposition of final states corresponding to energy transfer
ω ± $ω. Imagine we want now to compute exclusive one- and
two-body momentum distributions

n1(A) = ⟨' f |n̂A|' f ⟩ n2(A, B) = ⟨' f |n̂An̂B|' f ⟩, (20)

where n̂k ≡ n̂( p⃗k, σk, τk ) is the number operator for a state
with momentum p⃗k , spin σk , and isospin τk . We can define
a unitary operator UnA = exp(−iπ n̂A) (which is efficiently
implementable) and run the circuit depicted in Fig. 2 with an
ancilla qubit. By using the idempotence of n̂A we find

P(|0⟩) = 1 − n1(A) P(|1⟩) = n1(A) (21)

and we can then extract the expectation value by estimating
these probabilities. Note that we may use the same procedure
with UnA,nB = exp(−iπ n̂An̂B) to estimate n2(A, B) (and possi-
bly higher body momentum distributions). We can get a better
strategy by reusing the final state of the circuit of Fig. 2 upon
measuring the ancilla in |1⟩ and running it again with UnB since
the probabilities now will be

P′(|0⟩) = 1 − n2(A)
n1(A)

P′(|1⟩) = n2(A)
n1(A)

. (22)

Note that |' f ⟩ will in general be contaminated by final state
interactions but we can access a better approximation to an
asymptotic state by evolving it in time using Ût .

This measurement procedure will need to then be repeated
a polynomial number of times for all the observables of

FIG. 2. Circuit for measuring the momentum distribution.

034610-4

Algorithm requires:
•  ground-state preparation, 
•  coupling to current
• real time propagation (short) 

Roggero, JC; PRC 2019
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periodic boundary conditions. One of the nucleons is
chosen to be static (infinite mass) on a specific lattice
site. This can be thought of as a triton (a nucleus with
one protons and two neutrons), or the static nucleon can
be thought of as providing a static field in which the
interacting pair propagates.
Calculations of realistic response demonstrate that

two-nucleon physics incorporates much of the informa-
tion about nuclear response[14], making even such a sim-
ple problem important. The fixed particle is ultimately
a source of additional final state scattering which in tra-
ditional event generators is included as a semi-classical
evolution. Quantum computers will eventually be able
to treat the full problem for A nucleons quantum me-
chanically. In the near term these kinds of models allow
for tests of the generator paradigm, where at the vertex
a struck nucleon or nucleon pair is treated quantum me-
chanically and then propagates through the rest of the
nucleus in a semiclassical manner.
The Hamiltonian we use is:

H = �t

Nf
X

f=1

X

hi,ji

c†i,fcj,f + 2dtA

+ U
X

i=1

Nf
X

f<f 0

ni,fni,f 0 + V

Nf
X

f<f 0<f 00

X

i=1

ni,fni,f 0ni,f 00

+ U

Nf
X

f=1

n1,f + V

Nf
X

f<f 0

n1,fn1,f 0

(23)

where the static nucleon is placed on lattice site 1.
For this example we use only 2 dynamical particles and

we set Nf = 2. On a 2⇥ 2 lattice with Nf = 2 modes we
find that the 2 ⇥ 2 Hamiltonian in second quantization
with the simple Jordan-Wigner mapping described above
(1 qubit for each single-particle orbital) will require a to-
tal of 8 qubits to encode the problem. We are, however,
interested in the sector containing A = 2 dynamical par-
ticles whose dimension is only 16 and should require just
4 qubits. In the following we will use a first-quantized
mapping that accomplishes this minimal encoding.
We can use 2 qubits per particle to store its lattice

location in the following way (see also Fig. 6)

|1i ⌘ |##i |2i ⌘ |#"i |3i ⌘ |"#i |4i ⌘ |""i . (24)

The hopping term in the kinetic energy is very simple
and takes the form

Hhop = HA
hop ⌦ 1B + 1A ⌦HB

hop (25)

where

HA
hop = �2t

0

B

@

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1

C

A

⌘ �2t (X1 ⌦ 12 + 11 ⌦X2)

(26)

FIG. 6. Qubit mapping for a single fermion.

where Xk is the Pauli-X operator applied to qubit k and
the additional factor of 2 comes from the periodic bound-
ary conditions. The total hopping term reads then

Hhop = �2t (X1 +X2 +X3 +X4) (27)

where we dropped the identity operators for simplicity.
For the diagonal part, we can extract an overall piece

proportional to the identity on all qubits with coe�cient
8t+U ; to change the diagonal element corresponding to
the state |11i we add 2U + V ; and when both particles
are on di↵erent lattice sites and neither of which is 1 by
adding �U .
The procedure to do this in terms of Pauli operators is

very simple as shown by a couple of examples. Consider
the two sets of operators

Mk =
1k � Zk

2
⇧k =

1k + Zk

2
. (28)

In terms of these operators we have

(2U + V ) |11i h11| = (2U + V ) |####i h####|
=(2U + V ) [⇧1 ⌦⇧2 ⌦⇧3 ⌦⇧4]

‘ (29)

and

�U |23i h23| = �U |#""#i h#""#|
=� U [⇧1 ⌦M2 ⌦M3 ⌦⇧4]

(30)

and so on for the other terms.
The limiting case, V = �4U , results in the following

simplified Hamiltonian:

H = 8t+
U

2
� 2t

4
X

k=1

Xk

� U

4
(Z1Z4 + Z2Z3)� U

4

X

i<j<k

ZiZjZk .

(31)

Scaling with problem size, highly simplified
problem on actual QC

Roggero, et al, arXiv: 1911.06368
STA is only one (nontrivial) time step
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this expression is that it requires entangling gates on all
but one pair of qubits (ie. in the expression above there

is no connection q0 $ q1 but all others).
With the additional connectivity constraints of the

IBM QPU ’Poughkeepsie’ we found the following circuit

q0 Rz(✓2) • Rz(✓2) • • Rz(✓2) • • Rx(✓1)

q1 • Rz(✓2) • Rz(✓2) ⇥ • • Rz(✓2) Rx(✓1)

q2 • • ⇥ • • Rx(✓1)

q3 • • Rx(✓1)

, (35)

where in the box denoted with the dashed line we perform
a swap of both q1 $ q2 and q0 $ q3. Of the latter two
of the three CNOT involved in the operation cancel with
neighboring gates.

We can now show results for some dynamical property.
In Fig. 7 we plot the 3-body contact density

C3(t) = h (t)|⇧0000| (t)i ⌘ |h0000| (t)i|2 (36)

as a function of time starting at time t = 0 with the
trial state of the previous section. The expression above
measures the probability of the three nucleons to be on
the same site (the state |0000i in our basis). The time
evolution is obtained by means of the linear Trotter de-
composition described above and therefore starts to devi-
ate considerably from the exact time evolution at around
t ⇠ 0.04.

In the left panel we show, together with the exact result
with the solid blue line, the bare results obtained by run-
ning the algorithm on either the actual quantum device
(black circles) or on a local virtual machine employing a
noise model designed to mimic the behaviour of the real
device (red squares) [46]. The hardware results were ob-
tained using the ’Poughkeepsie’ QPU (backend version
1.2.0) over a 3 weeks period starting on 23 August 2019
and adopting the mapping (q0, q1, q2, q3) ! (q5, q0, q1, q6)
from the 4 logical qubits to the hardware ones. The cor-
responding results on the Virtual Machine used the noise
model configured with the calibration data on 11 Septem-
ber 2019.

In both cases, we see that the results tend to relax to-
wards the classical completely depolarized value of 1/16
(dashed brown line) but that we can still detect a rea-
sonable signal. The observed large bias at small times
might be attributable to control errors in the device and
unfortunately does not allow this particular set of qubits
to be used to perform multiple Trotter steps as the error
in the useful region is too large. Di↵erent choices for the
logical to physical qubit mapping can improve the fidelity
in the small time region.

We want turn our attention to the right plot in Fig. 7.
As explained in more detail in the next subsection, we
have attempted to mitigate the systematic errors caused
by hardware noise by performing 3 independent noise
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FIG. 7. Probability of finding the 3 nucleons on the same site
as a function of time using both a real QPU (black circles)
and a simulated VM (red squares). See text for a description
of the left panel.

extrapolations and comparing them to assess both the
stability of our extrapolations and the stability of the
machine during a particular run. Whenever the di↵er-
ent schemes do not agree we increase an error counter
and filter the final results using the total error count as
a metric for the run quality. In the right panel of Fig. 7
we present the result after this mitigation procedure for
di↵erent values of the error count starting from 0 (filter
A0 in the figure) up to 2 errors (filter A2). In addition
to the results obtained on hardware with this approach,
we also plot the results at the 2 error level of accuracy
for both the synthetic data produced by the VM (the red
squares on the left panel) and the results obtained by re-
laxing the consistency checks at the 2� level of precision.
We can see that the simpler noise model implemented
in the VM can be completely mitigated using this strat-
egy while for the real hardware case there seems to be
a problem in the time region t 2 [0.3 � 0.4] where no
results with good enough quality can be obtained. We
will provide a possible explanation for this phenomenon
after discussing in more details the mitigation procedure
adopted in our work.
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This choice of parameters is motivated by the require-
ment that the 3-body repulsive term be larger than the
3 pair interaction energy in order to prevent the collapse
of the bound state. In the following we will consider the
following numerical values: t = 1.0, U = �7.0, V = 28.

A. State preparation

A simple trial state that is also economic to optimize
can be obtained by considering the following circuit

Ry(✓) • •

Ry(✓) • •

Ry(✓) • Ry(�) •

Ry(✓) • Ry(�) •

, (32)

parametrized by two angles (✓,�) and requires only linear
connectivity to be implemented.

The entanglement structure is inspired by the CCSD-
type wavefunction that we would construct in the absence
of the 3�body terms in the Hamiltonian of Eq. (31) and
by the fact that the Hamiltonian is real in the computa-
tional basis.

As can be seen from Tab. II, despite its simplicity this
trial state has only about 10% error in the energy and
sum rules are comparable with the exact ground state. In
the results presented in this work, the optimization of the
two parameters of our trial state is performed o↵-line us-
ing a simulator locally. After extensive experimentation
we, in fact, determined that this was the most e�cient
and accurate strategy: this is possibly a consequence of
the simplicity of the problem. In the central two rows of
Tab. II, we present the results obtained by estimating the
properties of the state generated on a real quantum pro-
cessor. In particular, we mapped our four computational
qubits into qubit 5,0,1 and 6 respectively on the IBMQ
20 qubit machine Poughkeepsie [45]. In the first line de-
noted ’QPU bare’, we report the bare result obtained
from a statistical analysis of 324 runs each comprising

of 8192 repetitions (shots) but without performing any
form of error mitigation. The next line shows the much
better result obtained by mitigating both read-out noise
and the decoherence e↵ect coming from the CNOT gates
(see Section III C for more details).
In the last line of Tab. II we report instead the (error

mitigated) results obtained from 108 runs using a more
symmetric version of the trial state above and shown be-

Energy S(0,1) S(1,0) S(1,1)
exact g.s. -4.843 2.038 2.038 2.054
trial state -4.415 2.024 2.024 2.366
QPU bare -2.645(15) 2.0290(23) 2.0242(24) 2.1572(25)
QPU corr -4.4187(98) 1.9993(35) 1.9926(36) 2.2789(51)
QPU sym -4.322(33) 2.0105(69) 2.0030(45) 2.3341(95)

TABLE II. Results for the ground state energy and the static
structure factor. Errors in the experimental result account
for statistical fluctuations only.

low

Ry(✓) • Ry(�/2) •

Ry(✓) • Ry(�/2) •

Ry(✓) • Ry(�/2) •

Ry(✓) • Ry(�/2) •

. (33)

The added symmetry seems to bring some advantage
in the (1, 1) sum rule but the added noise caused by ad-
ditional noisy rotations seems to be detrimental for the
energy.

B. Real time dynamics

In the general case (V 6= 0 and V 6= �4U) one can use
the result from [29] which implies that we would need
14 CNOT and 15 single qubit rotations for the diagonal
part of the propagator plus 4 more X rotations for the
hopping term resulting in 14 CNOT and 19 rotations
(with more constraints like having a circle topology this
can increase to 16 CNOT. See also Eq. (B47)). For the
special case V = �4U a simpler expression can be found

q0 • • • Rx(✓1)

q1 • • • • Rx(✓1)

q2 Rz(✓2) Rz(✓2) • • Rx(✓1)

q3 Rz(✓2) Rz(✓2) Rz(✓2) Rz(✓2) Rx(✓1)

(34)

with ✓1 = 4t⌧ and ✓2 = ⌧U/2. This implementation requires 10 rotations and 10 CNOT. The problem with

Circuit for Time Evolution
Highly Simplified Lattice Problem



Conclusions
EW processes on nuclei at the q ≧ kF 

are important, even sometimes at low energy 

electron/neutrino scattering 
electron and neutrinos in astrophysics 
beta decay and double beta decay 
0+ to 0+ beta decay 

Good description w/ realistic nuclear interactions 
and currents 

Real-time dynamics is important



Future directions

• Larger Nuclei


• Relativistic few-nucleon dynamics


• Pion Production (Noemi Rocco, et al) 
requires NN inelastic processes 
can we match to lattice


• Quantum to Classical Transition 
can we match to generators


• Quantum Computing: even a short  
coherence time may be valuable.

Noemi Rocco, et al (2018) 


